- examp
import numpy as np
import time
import tensorflow as tf
tf.set_random_seed(0)
class FSMN(object):
def __init__(self, memory_size, input_size, output_size, dtype=tf.float32):
self._memory_size = memory_size
self._output_size = output_size
self._input_size = input_size
self._dtype = dtype
self._build_graph()
def _build_graph(self):
self._W1 = tf.get_variable("fsmnn_w1", [self._input_size, self._output_size], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=self._dtype))
self._W2 = tf.get_variable("fsmnn_w2", [self._input_size, self._output_size], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=self._dtype))
self._bias = tf.get_variable("fsmnn_bias", [self._output_size], initializer=tf.constant_initializer(0.0, dtype=self._dtype))
self._memory_weights = tf.get_variable("memory_weights", [self._memory_size], initializer=tf.constant_initializer(1.0, dtype=self._dtype))
def __call__(self, input_data):
batch_size = input_data.get_shape()[0].value
num_steps = input_data.get_shape()[1].value
memory_matrix = []
for step in range(num_steps):
left_num = tf.maximum(0, step + 1 - self._memory_size)
right_num = num_steps - step - 1
mem = self._memory_weights[tf.minimum(step, self._memory_size)::-1]
d_batch = tf.pad(mem, [[left_num, right_num]])
memory_matrix.append([d_batch])
memory_matrix = tf.concat(memory_matrix,0)
h_hatt = tf.matmul([memory_matrix] * batch_size, input_data)
h = tf.matmul(input_data, [self._W1] * batch_size)
h += tf.matmul(h_hatt, [self._W2] * batch_size) + self._bias
return h
def main():
batch = 20
memory = 10
input = 200
steps = 30
output = 300
with tf.Session() as sess:
model = FSMN(memory, input, output)
model._memory_weights = tf.Variable(np.arange(memory), dtype=tf.float32)
tf.initialize_all_variables().run()
w1 = model._W1.eval()
w2 = model._W2.eval()
bias = model._bias.eval()
memory_weights = model._memory_weights.eval()
inputs = np.random.rand(batch, steps, input).astype(np.float32)
start = time.time()
ret = sess.run(model(tf.constant(inputs, dtype=tf.float32)))
print(str(time.time() - start), "(s)")
expect_first_batch = []
for i in range(steps):
hidden = np.sum([memory_weights[j] * inputs[0][i - j] for j in range(0, min(memory, i + 1))], axis=0)
expect_first_batch.append(np.dot(w1.T, inputs[0][i]) + np.dot(w2.T, hidden) + bias)
expect_first_batch = np.array(expect_first_batch)
real_first_batch = ret[0].reshape(-1, output)
assert (np.absolute(expect_first_batch - real_first_batch) < 0.0001).all()
tf.reset_default_graph()
if __name__ == '__main__':
main()