你可能是想输入 **MNIST**,这是一个非常经典的机器学习数据集。我们来详细解释一下:
---
### ✅ 正确名称:**MNIST**
**MNIST**(Modified National Institute of Standards and Technology)是一个广泛用于图像分类任务的手写数字识别数据集。
---
### 📌 MNIST 数据集简介
| 项目 | 内容 |
|------|------|
| 类别数 | 10(数字 0~9) |
| 图像大小 | 28×28 像素 |
| 图像格式 | 灰度图(单通道) |
| 训练样本数 | 60,000 张 |
| 测试样本数 | 10,000 张 |
| 每张图像标签 | 对应的数字类别(0-9) |
---
### 🔧 在 PyTorch 中加载 MNIST 数据集的示例代码
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理:转为张量并归一化
transform = transforms.Compose([
transforms.ToTensor(), # 转为 [0, 1]
transforms.Normalize((0.5,), (0.5,)) # 归一化到 [-1, 1], 单通道
])
# 加载 MNIST 数据集
train_dataset = torchvision.datasets.MNIST(
root='./datasets',
train=True,
download=True,
transform=transform
)
test_dataset = torchvision.datasets.MNIST(
root='./datasets',
train=False,
download=True,
transform=transform
)
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=2)
# 类别名称
classes = [str(i) for i in range(10)]
```
---
### 🧠 使用 LeNet 处理 MNIST(适配灰度图)
由于 MNIST 是单通道(1 channel),需要调整输入通道数:
```python
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 6, 5), # 输入通道 1(灰度图)
nn.Tanh(),
nn.AvgPool2d(2, 2),
nn.Conv2d(6, 16, 5),
nn.Tanh(),
nn.AvgPool2d(2, 2),
nn.Conv2d(16, 120, 5),
nn.Tanh()
)
self.classifier = nn.Sequential(
nn.Linear(120, 84),
nn.Tanh(),
nn.Linear(84, 10),
nn.LogSoftmax(dim=1)
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
---
### ✅ 完整训练流程(简略版)
```python
model = LeNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练循环
for epoch in range(5):
model.train()
running_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch [{epoch+1}/5], Loss: {running_loss/len(train_loader):.4f}")
# 测试准确率
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"测试准确率: {100 * correct / total:.2f}%")
```
---
### 🖼️ 可视化一个批次的 MNIST 图像
```python
import matplotlib.pyplot as plt
def imshow(img):
img = img / 2 + 0.5 # 反归一化 [-1,1] -> [0,1]
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)), cmap='gray')
plt.show()
# 获取一批数据
dataiter = iter(train_loader)
images, labels = next(dataiter)
# 显示图像
imshow(torchvision.utils.make_grid(images[:8]))
print(' '.join(f'{classes[labels[j]]}' for j in range(8)))
```
---
### ❗ 常见拼写错误
| 错误拼写 | 正确拼写 | 说明 |
|---------|----------|------|
| MINIST | MNIST | 手写数字数据集,不是“Ministry” 😊 |
| Mnist | MNIST | 应全大写或标准命名 |
| minist | MNIST | 同上 |
---