HOJ2662 Pieces Assignment 题解

Background

有一个n*m的棋盘(n、m≤80,n*m≤80)要在棋盘上放k(k≤20)个棋子,使得任意两个棋子不相邻(每个棋子最多和周围4个棋子相邻)。求合法的方案总数。

Input

本题有多组测试数据,每组输入包含三个正整数n,m和k。

Output

对于每组输入,输出只有一个正整数,即合法的方案数。

Sample Input

2 2 3
4 4 1

Sample Output

0
16

solution

这道题一看状态非常多,就一定是状压。
我们很容易就能想到有以下几个状态:

  • 每一行放了多少个旗子;
  • 已经用了多少个旗子;
  • 已经放的这些旗子能不能保证合法,即上下左右均不相邻。

我们先来考虑只有一行的情况,即转化为要求在这一行里边填充k个旗子,要求任意两个都不相邻,这个时候的dp应该怎么表示?这就很简单了,直接就是 dp[i][j][x] ,代表已经到了第i列,已经使用了j个旗子,而且当前第i列的状态就是x(当然这里x只能是0和1,这里0代表这个第i列没有放旗子,1就代表这个位置放了旗子)的总方案数,递推关系是怎么写?其实也很简单,
dp[i][j][0]=dp[i1][j][0]+dp[i1][j][1];

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值