ValueError : Tensor Tensor("predictions/Softmax:0",shape=(?,4),dtype=float32) is not an element of this graph
原始问题及解决方案
https://github.com/keras-team/keras/issues/2397#issuecomment-254919212
问题描述:
在keras+tensorflow框架下训练神经网络并得到权重h5文件。
在之后需要调用的python代码中读取权重和图片并预测
在C#多线程的子线程调用python代码时出现以下报错
“ValueError : Tensor Tensor(“predictions/Softmax:0”, shape=(?, 2), dtype=float32) is not an element of this graph
解决方法:
主要是在读取权重后增加一行graph = tf.get_default_graph()
model = load_model()
graph = tf.get_default_graph()
并在需要预测时前加 with graph.as_default():
原始py文件代码
#-*- coding:utf-8 -*-
from keras.applications.vgg16 import preprocess_input,VGG16
from keras.layers import Dense
from keras.models import Model
import numpy as np
from PIL import Image
from keras.optimizers import SGD
import time
import cv2
from math import *
from scipy.stats import mode
import tensorflow as tf
from keras import backend as K
import os
def get_session(gpu_fraction=1.0):
num_threads = os.environ.get('OMP_NUM_THREADS')
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
if num_threads:
return tf.Session(config=tf.ConfigProto(
gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
else:
return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
def