Given a sequence of integers S = {S1, S2, . . . , Sn}, you should determine what is the value of the maximum positive product involving consecutive terms of S. If you cannot find a positive sequence, you should consider 0 as the value of the maximum product.
Input
Each test case starts with 1 ≤ N ≤ 18, the number of elements in a sequence. Each element Si is an integer such that −10 ≤ Si ≤ 10. Next line will have N integers, representing the value of each element in the sequence. There is a blank line after each test case. The input is terminated by end of file (EOF).
Output
For each test case you must print the message: ‘Case #M: The maximum product is P.’, where M is the number of the test case, starting from 1, and P is the value of the maximum product. After each test case you must print a blank line.
Sample Input
3
2 4 -3
5
2 5 -1 2 -1
Sample Output
Case #1: The maximum product is 8.
Case #2: The maximum product is 20.
题意:输入n个元素组成的序列S,需要找出一个乘积最大的连续子序列。如果这个最大的乘积不是正数,应输出0(表示无解)。1≤n≤18,-10≤Si≤10。
注意:每行输出后有一行空白行
思路:连续子序列有两个要素:起点和终点,因此只需枚举起点和终点即可。由于每个元素的绝对值不超过10且不超过18个元素,最大可能的乘积不会超过10^18,可以用long long存储。
#include<stdio.h>
int main()
{
int n,a[20],q=0;
long long max,k;
while(scanf("%d",&n)!=EOF){
q++;
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
max=0;
for(int i=0;i<n;i++){ //枚举起点
for(int j=i;j<n;j++){ //枚举终点
k=1;
for(int t=i;t<=j;t++){
k=k*a[t];
if(max<k){
max=k;
}
}
}
}
printf("Case #%d: The maximum product is %lld.\n",q,max);
printf("\n");
}
}