hdu 2964按奇数权展开

本文探讨了一种独特的正整数表示法,即利用质数序列构造的混合基数表示法。通过对输入的正整数进行分解,可以将其唯一地表示为这种形式。文章提供了具体的实现算法,并通过样例详细解释了这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prime Bases

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 422    Accepted Submission(s): 208


Problem Description
Given any integer base b >= 2, it is well known that every positive integer n can be uniquely represented in base b. That is, we can write

n = a0 + a1*b + a2*b*b + a3*b*b*b + ... 

where the coefficients a0, a1, a2, a3, ... are between 0 and b-1 (inclusive).

What is less well known is that if p0, p1, p2, ... are the first primes (starting from 2, 3, 5, ...), every positive integer n can be represented uniquely in the "mixed" bases as:

n = a0 + a1*p0 + a2*p0*p1 + a3*p0*p1*p2 + ... 

where each coefficient ai is between 0 and pi-1 (inclusive). Notice that, for example, a3 is between 0 and p3-1, even though p3 may not be needed explicitly to represent the integer n.

Given a positive integer n, you are asked to write n in the representation above. Do not use more primes than it is needed to represent n, and omit all terms in which the coefficient is 0.
 

Input
Each line of input consists of a single positive 32-bit signed integer. The end of input is indicated by a line containing the integer 0.
 

Output
For each integer, print the integer, followed by a space, an equal sign, and a space, followed by the mixed base representation of the integer in the format shown below. The terms should be separated by a space, a plus sign, and a space. The output for each integer should appear on its own line.
 

Sample Input
123 456 123456 0
 

Sample Output
123 = 1 + 1*2 + 4*2*3*5 456 = 1*2*3 + 1*2*3*5 + 2*2*3*5*7 123456 = 1*2*3 + 6*2*3*5 + 4*2*3*5*7 + 1*2*3*5*7*11 + 4*2*3*5*7*11*13

hdu  2964

找到的合适的奇数权开始,从大到小逐个计算其系数。

1、题目给出n = a0 + a1*p0 + a2*p0*p1 + a3*p0*p1*p2 + ... ,说明对于输入的每一个n都可分解完,这是前提。

这取决于每个base的特点:1、2、2*3、2*3*5、2*3*5*7、2*3*5*7*11...。比如n=123,它的最大base为2*3*5,我们用n%(2*3*5)得到到值一定小于7!利用反证法,如果大于7,那么最大的base最小也得是2*3*5*7啦!这就证明了开始的处理是正确的。那么,我们再假设计算到第k个base时是正确的。我们会有经过第k个base处理

后的数据一定小于第k个base,假设第k个base为2*3*5*7*11,处理后n=(2*3*5*7)*(0---11)。这就说明了第k-1个base的处理也一定是正确的!

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define N 16001
#define ll long long
using namespace std;
const int prime[]={2,3,5,7,11,13,17,19,23,29,31,37};
ll data[15];
int b[15];
ll n;
void init()
{
    int i,j;
    memset(data,1,sizeof(data));
    data[0]=2;
    for(i=1;i<13;i++)
    {
      data[i]=data[i-1]*prime[i];
    }
}
int work()
{
    int i,j,k,temp;
    for(i=0;i<11;i++)
    {
        if(data[i]<=n&&data[i+1]>n)
        {
            temp=i;
            break;
        }
    }
    for(i=temp;i>=0;i--)
    {
      b[i]=n/data[i];
      n=n%data[i];
    }
    return temp;
}
int main()
{
    int i,j,k;
    init();
    while(scanf("%I64d",&n)&&n)
    {
        printf("%I64d = ",n);
        k=work();
        int f=0;
        if(n>0)
        {
            printf("%d",n);
            f=1;
        }
        for(i=0;i<=k;i++)
        {
          if(b[i]!=0)
          {
              if(f!=0)
              {
                  printf(" + ");
              }
              else
              f=1;
              printf("%d",b[i]);
              for(j=0;j<=i;j++)
              printf("*%d",prime[j]);
          }
        }
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值