assert / de-assert an interrupt是什么意思

本文解释了在硬件设计和嵌入式系统中常见的术语Assert和De-assert的含义。Assert意味着将信号设置为其活动状态,而De-assert则表示将信号置于非活动状态。文章进一步说明了对于低电平有效的信号,asserting意味着将其设置为低电平,而deasserting则意味着将其设置为高电平。

经常会在Datasheet看到Assert(Asserting、Asserted),De-assert(Deassert、deasserting、deasserted)等词。

如下面这句:

Assertion of LDT_RST# causes the CPU to transition into a low power state and to de-assert MEMCLKEA/B and assert MEMREST_L.

那这个词是什么意思呢,下面就来解释一下这两个词的意思:

Assert:意思就是把信号变为active(可以理解为有效),根据系统有求不同,该有效电平可以是高电平(即高有效)也可以是低电平(即低有效)。
De-assert:意思就是解除active状态,就是信号变为非active状态,可以是高也可以是低。

英文解释:

Assert:Set a signal to its “active” state;

De-assert: Set a signal to its “inactive” state。
If a signal is active-low,“asserting” that signal means setting it low and deasserting it means setting it high。

我现在给你提供scheduler.cc和scheduler.h的代码,scheduler.cc如下:#include "copyright.h" #include "debug.h" #include "scheduler.h" #include "main.h" //---------------------------------------------------------------------- // Scheduler::Scheduler // 初始化4个优先级的就绪队列(0最高,3最低),初始化待销毁线程标记 //---------------------------------------------------------------------- Scheduler::Scheduler() { toBeDestroyed = NULL; // 为每个优先级初始化就绪队列 for (int i = 0; i < MAX_PRIORITY; i++) { readyList[i] = new List<Thread *>; } } //---------------------------------------------------------------------- // Scheduler::~Scheduler // 释放所有优先级队列的内存 //---------------------------------------------------------------------- Scheduler::~Scheduler() { for (int i = 0; i < MAX_PRIORITY; i++) { delete readyList[i]; } } //---------------------------------------------------------------------- // Scheduler::ReadyToRun // 按线程优先级加入对应队列尾部(同优先级FIFO) // "thread":待加入就绪队列的线程 //---------------------------------------------------------------------- void Scheduler::ReadyToRun (Thread *thread) { ASSERT(kernel->interrupt->getLevel() == IntOff); DEBUG(dbgThread, "Putting thread on ready list: " << thread->getName()); thread->setStatus(READY); // 核心修改:按线程priority加入对应优先级队列 // 优先级范围0~3,超出则默认加入优先级3队列 int prio = thread->priority; if (prio < 0) prio = 0; else if (prio >= MAX_PRIORITY) prio = MAX_PRIORITY - 1; readyList[prio]->Append(thread); // 同优先级按FIFO加入队列尾部 } //---------------------------------------------------------------------- // Scheduler::FindNextToRun // 从最高优先级(0)开始遍历队列,返回第一个非空队列的队首线程 // 若无就绪线程,返回NULL;有则从队列移除该线程 //---------------------------------------------------------------------- Thread * Scheduler::FindNextToRun () { ASSERT(kernel->interrupt->getLevel() == IntOff); // 优先遍历高优先级队列(0 → 1 → 2 → 3) for (int prio = 0; prio < MAX_PRIORITY; prio++) { if (!readyList[prio]->IsEmpty()) { return readyList[prio]->RemoveFront(); } } // 无就绪线程 return NULL; } //---------------------------------------------------------------------- // Scheduler::Run // 保留你原文件的所有逻辑:上下文切换、用户态寄存器保存/恢复、线程销毁标记 // "nextThread":待调度的下一个线程 // "finishing":标记当前线程是否需要销毁 //---------------------------------------------------------------------- void Scheduler::Run (Thread *nextThread, bool finishing) { Thread *oldThread = kernel->currentThread; ASSERT(kernel->interrupt->getLevel() == IntOff); if (finishing) { // 标记当前线程需要销毁 ASSERT(toBeDestroyed == NULL); toBeDestroyed = oldThread; } if (oldThread->space != NULL) { // 保存用户程序的CPU寄存器和地址空间 oldThread->SaveUserState(); oldThread->space->SaveState(); } oldThread->CheckOverflow(); // 检查栈溢出 kernel->currentThread = nextThread; // 切换当前线程 nextThread->setStatus(RUNNING); // 标记新线程为运行态 DEBUG(dbgThread, "Switching from: " << oldThread->getName() << " to: " << nextThread->getName()); // 上下文切换(保留原有汇编逻辑) SWITCH(oldThread, nextThread); // 切换回原线程后执行 ASSERT(kernel->interrupt->getLevel() == IntOff); DEBUG(dbgThread, "Now in thread: " << oldThread->getName()); CheckToBeDestroyed(); // 检查并销毁已结束的线程 if (oldThread->space != NULL) { // 恢复用户程序的寄存器和地址空间 oldThread->RestoreUserState(); oldThread->space->RestoreState(); } } //---------------------------------------------------------------------- // Scheduler::CheckToBeDestroyed // 保留你原文件的逻辑:销毁标记为待销毁的线程 //---------------------------------------------------------------------- void Scheduler::CheckToBeDestroyed() { if (toBeDestroyed != NULL) { delete toBeDestroyed; toBeDestroyed = NULL; } } //---------------------------------------------------------------------- // Scheduler::Print // 适配多队列:打印每个优先级的就绪线程(保留原有打印逻辑) //---------------------------------------------------------------------- void Scheduler::Print() { cout << "Ready list contents (优先级0最高 → 3最低):\n"; for (int prio = 0; prio < MAX_PRIORITY; prio++) { cout << " 优先级" << prio << ": "; readyList[prio]->Apply(ThreadPrint); cout << endl; } } scheduler.h如下: #ifndef SCHEDULER_H #define SCHEDULER_H #include "copyright.h" #include "list.h" #include "thread.h" // 优先级定义:0(最高优先级)~3(最低优先级) #define MAX_PRIORITY 4 // 调度器类:按优先级调度,同优先级FIFO class Scheduler { public: Scheduler(); // 初始化优先级就绪队列 ~Scheduler(); // 释放就绪队列内存 void ReadyToRun(Thread* thread); // 按优先级将线程加入对应就绪队列 Thread* FindNextToRun(); // 优先取最高优先级队列的队首线程 void Run(Thread* nextThread, bool finishing); // 切换到目标线程执行(保留原有逻辑) void CheckToBeDestroyed();// 检查并销毁已结束的线程(保留原有逻辑) void Print(); // 打印所有优先级队列的线程(适配多队列) private: List<Thread *> *readyList[MAX_PRIORITY]; // 优先级0~3对应的就绪队列 Thread *toBeDestroyed; // 待销毁的线程(保留原有字段) }; #endif // SCHEDULER_H 请你查出问题,然后给我完成的scheduler.cc、scheduler.h和thread.cc的代码
最新发布
12-10
include "zf_common_debug.h" #include "zf_common_interrupt.h" #include "zf_common_clock.h" #include "zf_driver_flash.h" flash_data_union flash_union_buffer[FLASH_DATA_BUFFER_SIZE]; // FLASH 操作的数据缓冲区 //------------------------------------------------------------------------------------------------------------------- // 函数简介 校验 FLASH 是否有数据 // 参数说明 sector_num 需要写入的扇区编号 参数范围 <0 - 63> // 参数说明 page_num 当前扇区页的编号 参数范围 <0 - 3> // 返回参数 uint8 1-有数据 0-没有数据 如果需要对有数据的区域写入新的数据则应该对所在扇区进行擦除操作 // 使用示例 flash_check(63, 3); // 备注信息 //------------------------------------------------------------------------------------------------------------------- uint8 flash_check (uint32 sector_num, uint32 page_num) { zf_assert(sector_num <= FLASH_MAX_SECTION_INDEX); // 参数范围 0-63 zf_assert(page_num <= FLASH_MAX_PAGE_INDEX); // 参数范围 0-3 uint8 return_state = 0; uint16 temp_loop; uint32 flash_addr = ((FLASH_BASE_ADDR+FLASH_SECTION_SIZE*sector_num+FLASH_PAGE_SIZE*page_num)); // 提取当前 Flash 地址 uint32 primask = interrupt_global_disable(); //clock_reset(); // 复位时钟 //clock_set_freq(SYSTEM_CLOCK_120M); // 设置系统频率为120Mhz for(temp_loop = 0; temp_loop < FLASH_PAGE_SIZE; temp_loop+=4) // 循环读取 Flash 的值 { if( (*(__IO u32*) (flash_addr+temp_loop)) != 0xE339E339 ) // 该单片机擦除后如果不是 0xE339E339 那就是有值 { return_state = 1; break; } } //clock_reset(); // 复位时钟 //clock_set_freq(system_clock); // 设置回原来的系统频率 interrupt_global_enable(primask); return return_state; } //------------------------------------------------------------------------------------------------------------------- // 函数简介 擦除一个扇区数据(4KB) // 参数说明 sector_num 需要写入的扇区编号 参数范围 <0 - 63> // 参数说明 page_num 当前扇区页的编号 参数范围 <0 - 3> // 返回参数 uint8 1-表示失败 0-表示成功 // 使用示例 flash_erase_page(63, 3); // 备注信息 // 标准擦除只能是擦一个扇区的数据,4KB字节长度 //------------------------------------------------------------------------------------------------------------------- uint8 flash_erase_sector (uint32 sector_num, uint32 page_num) { zf_assert(sector_num <= FLASH_MAX_SECTION_INDEX); // 参数范围 0-63 zf_assert(page_num <= FLASH_MAX_PAGE_INDEX); // 参数范围 0-3 uint8 return_state = 0; static volatile FLASH_Status gFlashStatus = FLASH_COMPLETE; uint32 flash_addr = ((FLASH_BASE_ADDR+FLASH_SECTION_SIZE*sector_num+FLASH_PAGE_SIZE*page_num)); // 提取当前 Flash 地址 uint32 primask = interrupt_global_disable(); //clock_reset(); // 复位时钟 //clock_set_freq(SYSTEM_CLOCK_120M); // 设置系统频率为120Mhz FLASH_Unlock(); // 解锁 Flash FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR); // 清除操作标志 gFlashStatus = FLASH_ErasePage(flash_addr); // 擦除 FLASH_ClearFlag(FLASH_FLAG_EOP ); // 清楚操作标志 FLASH_Lock(); // 锁定 Flash if(gFlashStatus != FLASH_COMPLETE) // 判断操作是否成功 { return_state = 1; } //clock_reset(); // 复位时钟 //clock_set_freq(system_clock); // 设置回原来的系统频率 interrupt_global_enable(primask); return return_state; } //------------------------------------------------------------------------------------------------------------------- // 函数简介 读取一页 // 参数说明 sector_num 需要写入的扇区编号 参数范围 <0 - 63> // 参数说明 page_num 当前扇区页的编号 参数范围 <0 - 3> // 参数说明 buf 需要读取的数据地址 传入的数组类型必须为uint32 // 参数说明 len 需要写入的数据长度 参数范围 1-256 // 返回参数 void // 使用示例 flash_read_page(63, 3, data_buffer, 256); // 备注信息 //------------------------------------------------------------------------------------------------------------------- void flash_read_page (uint32 sector_num, uint32 page_num, uint32 *buf, uint16 len) { zf_assert(sector_num <= FLASH_MAX_SECTION_INDEX); // 参数范围 0-63 zf_assert(page_num <= FLASH_MAX_PAGE_INDEX); // 参数范围 0-3 zf_assert(len <= FLASH_DATA_BUFFER_SIZE); uint16 temp_loop = 0; uint32 flash_addr = 0; flash_addr = ((FLASH_BASE_ADDR+FLASH_SECTION_SIZE*sector_num+FLASH_PAGE_SIZE*page_num)); // 提取当前 Flash 地址 uint32 primask = interrupt_global_disable(); //clock_reset(); // 复位时钟 //clock_set_freq(SYSTEM_CLOCK_120M); // 设置系统频率为120Mhz for(temp_loop = 0; temp_loop < len; temp_loop++) // 根据指定长度读取 { *buf++ = *(__IO uint32*)(flash_addr+temp_loop*4); // 循环读取 Flash 的值 } // 锁定 Flash //clock_reset(); // 复位时钟 //clock_set_freq(system_clock); // 设置回原来的系统频率 interrupt_global_enable(primask); } //------------------------------------------------------------------------------------------------------------------- // 函数简介 编程一页 // 参数说明 sector_num 需要写入的扇区编号 参数范围 <0 - 63> // 参数说明 page_num 当前扇区页的编号 参数范围 <0 - 3> // 参数说明 buf 需要写入的数据地址 传入的数组类型必须为 uint32 // 参数说明 len 需要写入的数据长度 参数范围 1-256 // 返回参数 uint8 1-表示失败 0-表示成功 // 使用示例 flash_write_page(63, 3, data_buffer, 256); // 备注信息 //------------------------------------------------------------------------------------------------------------------- uint8 flash_write_page (uint32 sector_num, uint32 page_num, const uint32 *buf, uint16 len) { zf_assert(sector_num <= FLASH_MAX_SECTION_INDEX); // 参数范围 0-63 zf_assert(page_num <= FLASH_MAX_PAGE_INDEX); // 参数范围 0-3 zf_assert(len <= FLASH_DATA_BUFFER_SIZE); uint8 return_state = 0; static volatile FLASH_Status gFlashStatus = FLASH_COMPLETE; uint32 flash_addr = 0; flash_addr = ((FLASH_BASE_ADDR+FLASH_SECTION_SIZE*sector_num+FLASH_PAGE_SIZE*page_num)); // 提取当前 Flash 地址 if(flash_check(sector_num, page_num)) // 判断是否有数据 这里是冗余的保护 防止有人没擦除就写入 { flash_erase_sector(sector_num, page_num); // 擦除这一扇区 } uint32 primask = interrupt_global_disable(); //clock_reset(); // 复位时钟 //clock_set_freq(SYSTEM_CLOCK_120M); // 设置系统频率为120Mhz FLASH_Unlock(); // 解锁 Flash while(len--) // 根据长度 { gFlashStatus = FLASH_ProgramWord(flash_addr, *buf++); // 按字 32bit 写入数据 if(gFlashStatus != FLASH_COMPLETE) // 反复确认操作是否成功 { return_state = 1; break; } flash_addr += 4; // 地址自增 } FLASH_Lock(); // 锁定 Flash //clock_reset(); // 复位时钟 //clock_set_freq(system_clock); // 设置回原来的系统频率 interrupt_global_enable(primask); return return_state; } //------------------------------------------------------------------------------------------------------------------- // 函数简介 从指定 FLASH 的扇区的指定页码读取数据到缓冲区 // 参数说明 sector_num 需要写入的扇区编号 参数范围 <0 - 63> // 参数说明 page_num 当前扇区页的编号 参数范围 <0 - 3> // 返回参数 void // 使用示例 flash_read_page_to_buffer(63, 3); // 备注信息 //------------------------------------------------------------------------------------------------------------------- void flash_read_page_to_buffer (uint32 sector_num, uint32 page_num) { zf_assert(sector_num <= FLASH_MAX_SECTION_INDEX); // 参数范围 0-63 zf_assert(page_num <= FLASH_MAX_PAGE_INDEX); // 参数范围 0-3 uint16 temp_loop; uint32 flash_addr = ((FLASH_BASE_ADDR + FLASH_SECTION_SIZE*sector_num + FLASH_PAGE_SIZE*page_num)); // 提取当前 Flash 地址 for(temp_loop = 0; temp_loop < FLASH_DATA_BUFFER_SIZE; temp_loop++) // 根据指定长度读取 { flash_union_buffer[temp_loop].uint32_type = *(__IO uint32*)(flash_addr+temp_loop*4); // 循环读取 Flash 的值 } } //------------------------------------------------------------------------------------------------------------------- // 函数简介 向指定 FLASH 的扇区的指定页码写入缓冲区的数据 // 参数说明 sector_num 需要写入的扇区编号 参数范围 <0 - 63> // 参数说明 page_num 当前扇区页的编号 参数范围 <0 - 3> // 返回参数 uint8 1-表示失败 0-表示成功 // 使用示例 flash_write_page_from_buffer(63, 3); // 备注信息 //------------------------------------------------------------------------------------------------------------------- uint8 flash_write_page_from_buffer (uint32 sector_num, uint32 page_num) { zf_assert(sector_num <= FLASH_MAX_SECTION_INDEX); // 参数范围 0-63 zf_assert(page_num <= FLASH_MAX_PAGE_INDEX); // 参数范围 0-3 uint8 return_state = 0; static volatile FLASH_Status gFlashStatus = FLASH_COMPLETE; uint32 flash_addr = 0; uint16 len = 0; flash_addr = ((FLASH_BASE_ADDR+FLASH_SECTION_SIZE*sector_num+FLASH_PAGE_SIZE*page_num)); // 提取当前 Flash 地址 if(flash_check(sector_num, page_num)) // 判断是否有数据 这里是冗余的保护 防止有人没擦除就写入 flash_erase_sector(sector_num, page_num); // 擦除这一页 uint32 primask = interrupt_global_disable(); //clock_reset(); // 复位时钟 //clock_set_freq(SYSTEM_CLOCK_120M); // 设置系统频率为120Mhz FLASH_Unlock(); // 解锁 Flash while(len < FLASH_DATA_BUFFER_SIZE) // 根据长度 { gFlashStatus = FLASH_ProgramWord(flash_addr, flash_union_buffer[len].uint32_type); // 按字 32bit 写入数据 if(gFlashStatus != FLASH_COMPLETE) // 反复确认操作是否成功 { return_state = 1; break; } len++; // 长度自增 flash_addr += 4; // 地址自增 } FLASH_Lock(); // 锁定 Flash //clock_reset(); // 复位时钟 //clock_set_freq(system_clock); // 设置回原来的系统频率 interrupt_global_enable(primask); return return_state; } //------------------------------------------------------------------------------------------------------------------- // 函数简介 清空数据缓冲区 // 参数说明 void // 返回参数 void // 使用示例 flash_buffer_clear(); // 备注信息 //------------------------------------------------------------------------------------------------------------------- void flash_buffer_clear (void) { memset(flash_union_buffer, 0xFF, FLASH_PAGE_SIZE); } 根据上面的代码,写出一个初始化函数flash_init();内容是把flash备份的数据加载回数据缓存区数组里,实现SRAM数组的掉电不丢失
07-04
void vPortEnterCritical( void ) { portDISABLE_INTERRUPTS(); uxCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so * assert() if it is being called from an interrupt context. Only API * functions that end in "FromISR" can be used in an interrupt. Only assert if * the critical nesting count is 1 to protect against recursive calls if the * assert function also uses a critical section. */ if( uxCriticalNesting == 1 ) { configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 ); } } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } } /*-----------------------------------------------------------*/ __asm void xPortPendSVHandler( void ) { extern uxCriticalNesting; extern pxCurrentTCB; extern vTaskSwitchContext; /* *INDENT-OFF* */ PRESERVE8 mrs r0, psp isb /* Get the location of the current TCB. */ ldr r3, =pxCurrentTCB ldr r2, [ r3 ] /* Is the task using the FPU context? If so, push high vfp registers. */ tst r14, #0x10 it eq vstmdbeq r0!, {s16-s31} /* Save the core registers. */ stmdb r0!, {r4-r11, r14} /* Save the new top of stack into the first member of the TCB. */ str r0, [ r2 ] stmdb sp!, {r0, r3} mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY msr basepri, r0 dsb isb bl vTaskSwitchContext mov r0, #0 msr basepri, r0 ldmia sp!, {r0, r3} /* The first item in pxCurrentTCB is the task top of stack. */ ldr r1, [ r3 ] ldr r0, [ r1 ] /* Pop the core registers. */ ldmia r0!, {r4-r11, r14} /* Is the task using the FPU context? If so, pop the high vfp registers * too. */ tst r14, #0x10 it eq vldmiaeq r0!, {s16-s31} msr psp, r0 isb #ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata */ #if WORKAROUND_PMU_CM001 == 1 push { r14 } pop { pc } nop #endif #endif bx r14 /* *INDENT-ON* */ } /*-----------------------------------------------------------*/482行是这个 mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY
10-19
/* FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd. All rights reserved VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception. *************************************************************************** >>! NOTE: The modification to the GPL is included to allow you to !<< >>! distribute a combined work that includes FreeRTOS without being !<< >>! obliged to provide the source code for proprietary components !<< >>! outside of the FreeRTOS kernel. !<< *************************************************************************** FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Full license text is available on the following link: http://www.freertos.org/a00114.html *************************************************************************** * * * FreeRTOS provides completely free yet professionally developed, * * robust, strictly quality controlled, supported, and cross * * platform software that is more than just the market leader, it * * is the industry's de facto standard. * * * * Help yourself get started quickly while simultaneously helping * * to support the FreeRTOS project by purchasing a FreeRTOS * * tutorial book, reference manual, or both: * * http://www.FreeRTOS.org/Documentation * * * *************************************************************************** http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading the FAQ page "My application does not run, what could be wrong?". Have you defined configASSERT()? http://www.FreeRTOS.org/support - In return for receiving this top quality embedded software for free we request you assist our global community by participating in the support forum. http://www.FreeRTOS.org/training - Investing in training allows your team to be as productive as possible as early as possible. Now you can receive FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers Ltd, and the world's leading authority on the world's leading RTOS. http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, including FreeRTOS+Trace - an indispensable productivity tool, a DOS compatible FAT file system, and our tiny thread aware UDP/IP stack. http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate. Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS. http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS licenses offer ticketed support, indemnification and commercial middleware. http://www.SafeRTOS.com - High Integrity Systems also provide a safety engineered and independently SIL3 certified version for use in safety and mission critical applications that require provable dependability. 1 tab == 4 spaces! */ /*----------------------------------------------------------- * Implementation of functions defined in portable.h for the ARM CM4F port. *----------------------------------------------------------*/ /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #ifndef __TARGET_FPU_VFP #error This port can only be used when the project options are configured to enable hardware floating point support. #endif #if configMAX_SYSCALL_INTERRUPT_PRIORITY == 0 #error configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to 0. See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html #endif #ifndef configSYSTICK_CLOCK_HZ #define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ /* Ensure the SysTick is clocked at the same frequency as the core. */ #define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL ) #else /* The way the SysTick is clocked is not modified in case it is not the same as the core. */ #define portNVIC_SYSTICK_CLK_BIT ( 0 ) #endif /* The __weak attribute does not work as you might expect with the Keil tools so the configOVERRIDE_DEFAULT_TICK_CONFIGURATION constant must be set to 1 if the application writer wants to provide their own implementation of vPortSetupTimerInterrupt(). Ensure configOVERRIDE_DEFAULT_TICK_CONFIGURATION is defined. */ #ifndef configOVERRIDE_DEFAULT_TICK_CONFIGURATION #define configOVERRIDE_DEFAULT_TICK_CONFIGURATION 0 #endif /* Constants required to manipulate the core. Registers first... */ #define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) ) #define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) ) #define portNVIC_SYSTICK_CURRENT_VALUE_REG ( * ( ( volatile uint32_t * ) 0xe000e018 ) ) #define portNVIC_SYSPRI2_REG ( * ( ( volatile uint32_t * ) 0xe000ed20 ) ) /* ...then bits in the registers. */ #define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL ) #define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL ) #define portNVIC_SYSTICK_COUNT_FLAG_BIT ( 1UL << 16UL ) #define portNVIC_PENDSVCLEAR_BIT ( 1UL << 27UL ) #define portNVIC_PEND_SYSTICK_CLEAR_BIT ( 1UL << 25UL ) #define portNVIC_PENDSV_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL ) #define portNVIC_SYSTICK_PRI ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL ) /* Constants required to check the validity of an interrupt priority. */ #define portFIRST_USER_INTERRUPT_NUMBER ( 16 ) #define portNVIC_IP_REGISTERS_OFFSET_16 ( 0xE000E3F0 ) #define portAIRCR_REG ( * ( ( volatile uint32_t * ) 0xE000ED0C ) ) #define portMAX_8_BIT_VALUE ( ( uint8_t ) 0xff ) #define portTOP_BIT_OF_BYTE ( ( uint8_t ) 0x80 ) #define portMAX_PRIGROUP_BITS ( ( uint8_t ) 7 ) #define portPRIORITY_GROUP_MASK ( 0x07UL << 8UL ) #define portPRIGROUP_SHIFT ( 8UL ) /* Masks off all bits but the VECTACTIVE bits in the ICSR register. */ #define portVECTACTIVE_MASK ( 0xFFUL ) /* Constants required to manipulate the VFP. */ #define portFPCCR ( ( volatile uint32_t * ) 0xe000ef34 ) /* Floating point context control register. */ #define portASPEN_AND_LSPEN_BITS ( 0x3UL << 30UL ) /* Constants required to set up the initial stack. */ #define portINITIAL_XPSR ( 0x01000000 ) #define portINITIAL_EXEC_RETURN ( 0xfffffffd ) /* The systick is a 24-bit counter. */ #define portMAX_24_BIT_NUMBER ( 0xffffffUL ) /* A fiddle factor to estimate the number of SysTick counts that would have occurred while the SysTick counter is stopped during tickless idle calculations. */ #define portMISSED_COUNTS_FACTOR ( 45UL ) /* For strict compliance with the Cortex-M spec the task start address should have bit-0 clear, as it is loaded into the PC on exit from an ISR. */ #define portSTART_ADDRESS_MASK ( ( StackType_t ) 0xfffffffeUL ) /* Each task maintains its own interrupt status in the critical nesting variable. */ static UBaseType_t uxCriticalNesting = 0xaaaaaaaa; /* * Setup the timer to generate the tick interrupts. The implementation in this * file is weak to allow application writers to change the timer used to * generate the tick interrupt. */ void vPortSetupTimerInterrupt( void ); /* * Exception handlers. */ void xPortPendSVHandler( void ); void xPortSysTickHandler( void ); void vPortSVCHandler( void ); /* * Start first task is a separate function so it can be tested in isolation. */ static void prvStartFirstTask( void ); /* * Functions defined in portasm.s to enable the VFP. */ static void prvEnableVFP( void ); /* * Used to catch tasks that attempt to return from their implementing function. */ static void prvTaskExitError( void ); /*-----------------------------------------------------------*/ /* * The number of SysTick increments that make up one tick period. */ #if configUSE_TICKLESS_IDLE == 1 static uint32_t ulTimerCountsForOneTick = 0; #endif /* configUSE_TICKLESS_IDLE */ /* * The maximum number of tick periods that can be suppressed is limited by the * 24 bit resolution of the SysTick timer. */ #if configUSE_TICKLESS_IDLE == 1 static uint32_t xMaximumPossibleSuppressedTicks = 0; #endif /* configUSE_TICKLESS_IDLE */ /* * Compensate for the CPU cycles that pass while the SysTick is stopped (low * power functionality only. */ #if configUSE_TICKLESS_IDLE == 1 static uint32_t ulStoppedTimerCompensation = 0; #endif /* configUSE_TICKLESS_IDLE */ /* * Used by the portASSERT_IF_INTERRUPT_PRIORITY_INVALID() macro to ensure * FreeRTOS API functions are not called from interrupts that have been assigned * a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY. */ #if ( configASSERT_DEFINED == 1 ) static uint8_t ucMaxSysCallPriority = 0; static uint32_t ulMaxPRIGROUPValue = 0; static const volatile uint8_t * const pcInterruptPriorityRegisters = ( uint8_t * ) portNVIC_IP_REGISTERS_OFFSET_16; #endif /* configASSERT_DEFINED */ /*-----------------------------------------------------------*/ /* * See header file for description. */ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) { /* Simulate the stack frame as it would be created by a context switch interrupt. */ /* Offset added to account for the way the MCU uses the stack on entry/exit of interrupts, and to ensure alignment. */ pxTopOfStack--; *pxTopOfStack = portINITIAL_XPSR; /* xPSR */ pxTopOfStack--; *pxTopOfStack = ( ( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK; /* PC */ pxTopOfStack--; *pxTopOfStack = ( StackType_t ) prvTaskExitError; /* LR */ /* Save code space by skipping register initialisation. */ pxTopOfStack -= 5; /* R12, R3, R2 and R1. */ *pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */ /* A save method is being used that requires each task to maintain its own exec return value. */ pxTopOfStack--; *pxTopOfStack = portINITIAL_EXEC_RETURN; pxTopOfStack -= 8; /* R11, R10, R9, R8, R7, R6, R5 and R4. */ return pxTopOfStack; } /*-----------------------------------------------------------*/ static void prvTaskExitError( void ) { /* A function that implements a task must not exit or attempt to return to its caller as there is nothing to return to. If a task wants to exit it should instead call vTaskDelete( NULL ). Artificially force an assert() to be triggered if configASSERT() is defined, then stop here so application writers can catch the error. */ configASSERT( uxCriticalNesting == ~0UL ); portDISABLE_INTERRUPTS(); for( ;; ); } /*-----------------------------------------------------------*/ __asm void vPortSVCHandler( void ) { PRESERVE8 /* Get the location of the current TCB. */ ldr r3, =pxCurrentTCB ldr r1, [r3] ldr r0, [r1] /* Pop the core registers. */ ldmia r0!, {r4-r11, r14} msr psp, r0 isb mov r0, #0 msr basepri, r0 bx r14 } /*-----------------------------------------------------------*/ __asm void prvStartFirstTask( void ) { PRESERVE8 /* Use the NVIC offset register to locate the stack. */ ldr r0, =0xE000ED08 ldr r0, [r0] ldr r0, [r0] /* Set the msp back to the start of the stack. */ msr msp, r0 /* Globally enable interrupts. */ cpsie i cpsie f dsb isb /* Call SVC to start the first task. */ svc 0 nop nop } /*-----------------------------------------------------------*/ __asm void prvEnableVFP( void ) { PRESERVE8 /* The FPU enable bits are in the CPACR. */ ldr.w r0, =0xE000ED88 ldr r1, [r0] /* Enable CP10 and CP11 coprocessors, then save back. */ orr r1, r1, #( 0xf << 20 ) str r1, [r0] bx r14 nop } /*-----------------------------------------------------------*/ /* * See header file for description. */ BaseType_t xPortStartScheduler( void ) { #if( configASSERT_DEFINED == 1 ) { volatile uint32_t ulOriginalPriority; volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER ); volatile uint8_t ucMaxPriorityValue; /* Determine the maximum priority from which ISR safe FreeRTOS API functions can be called. ISR safe functions are those that end in "FromISR". FreeRTOS maintains separate thread and ISR API functions to ensure interrupt entry is as fast and simple as possible. Save the interrupt priority value that is about to be clobbered. */ ulOriginalPriority = *pucFirstUserPriorityRegister; /* Determine the number of priority bits available. First write to all possible bits. */ *pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE; /* Read the value back to see how many bits stuck. */ ucMaxPriorityValue = *pucFirstUserPriorityRegister; /* The kernel interrupt priority should be set to the lowest priority. */ configASSERT( ucMaxPriorityValue == ( configKERNEL_INTERRUPT_PRIORITY & ucMaxPriorityValue ) ); /* Use the same mask on the maximum system call priority. */ ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue; /* Calculate the maximum acceptable priority group value for the number of bits read back. */ ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS; while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE ) { ulMaxPRIGROUPValue--; ucMaxPriorityValue <<= ( uint8_t ) 0x01; } /* Shift the priority group value back to its position within the AIRCR register. */ ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT; ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK; /* Restore the clobbered interrupt priority register to its original value. */ *pucFirstUserPriorityRegister = ulOriginalPriority; } #endif /* conifgASSERT_DEFINED */ /* Make PendSV and SysTick the lowest priority interrupts. */ portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI; portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI; /* Start the timer that generates the tick ISR. Interrupts are disabled here already. */ vPortSetupTimerInterrupt(); /* Initialise the critical nesting count ready for the first task. */ uxCriticalNesting = 0; /* Ensure the VFP is enabled - it should be anyway. */ prvEnableVFP(); /* Lazy save always. */ *( portFPCCR ) |= portASPEN_AND_LSPEN_BITS; /* Start the first task. */ prvStartFirstTask(); /* Should not get here! */ return 0; } /*-----------------------------------------------------------*/ void vPortEndScheduler( void ) { /* Not implemented in ports where there is nothing to return to. Artificially force an assert. */ configASSERT( uxCriticalNesting == 1000UL ); } /*-----------------------------------------------------------*/ void vPortEnterCritical( void ) { portDISABLE_INTERRUPTS(); uxCriticalNesting++; /* This is not the interrupt safe version of the enter critical function so assert() if it is being called from an interrupt context. Only API functions that end in "FromISR" can be used in an interrupt. Only assert if the critical nesting count is 1 to protect against recursive calls if the assert function also uses a critical section. */ if( uxCriticalNesting == 1 ) { configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 ); } } /*-----------------------------------------------------------*/ void vPortExitCritical( void ) { configASSERT( uxCriticalNesting ); uxCriticalNesting--; if( uxCriticalNesting == 0 ) { portENABLE_INTERRUPTS(); } } /*-----------------------------------------------------------*/ __asm void xPortPendSVHandler( void ) { extern uxCriticalNesting; extern pxCurrentTCB; extern vTaskSwitchContext; PRESERVE8 mrs r0, psp isb /* Get the location of the current TCB. */ ldr r3, =pxCurrentTCB ldr r2, [r3] /* Is the task using the FPU context? If so, push high vfp registers. */ tst r14, #0x10 it eq vstmdbeq r0!, {s16-s31} /* Save the core registers. */ stmdb r0!, {r4-r11, r14} /* Save the new top of stack into the first member of the TCB. */ str r0, [r2] stmdb sp!, {r3} mov r0, #configMAX_SYSCALL_INTERRUPT_PRIORITY cpsid i msr basepri, r0 dsb isb cpsie i bl vTaskSwitchContext mov r0, #0 msr basepri, r0 ldmia sp!, {r3} /* The first item in pxCurrentTCB is the task top of stack. */ ldr r1, [r3] ldr r0, [r1] /* Pop the core registers. */ ldmia r0!, {r4-r11, r14} /* Is the task using the FPU context? If so, pop the high vfp registers too. */ tst r14, #0x10 it eq vldmiaeq r0!, {s16-s31} msr psp, r0 isb #ifdef WORKAROUND_PMU_CM001 /* XMC4000 specific errata */ #if WORKAROUND_PMU_CM001 == 1 push { r14 } pop { pc } nop #endif #endif bx r14 } /*-----------------------------------------------------------*/ void xPortSysTickHandler( void ) { /* The SysTick runs at the lowest interrupt priority, so when this interrupt executes all interrupts must be unmasked. There is therefore no need to save and then restore the interrupt mask value as its value is already known - therefore the slightly faster vPortRaiseBASEPRI() function is used in place of portSET_INTERRUPT_MASK_FROM_ISR(). */ vPortRaiseBASEPRI(); { /* Increment the RTOS tick. */ if( xTaskIncrementTick() != pdFALSE ) { /* A context switch is required. Context switching is performed in the PendSV interrupt. Pend the PendSV interrupt. */ portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; } } vPortClearBASEPRIFromISR(); } /*-----------------------------------------------------------*/ #if configUSE_TICKLESS_IDLE == 1 __weak void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime ) { uint32_t ulReloadValue, ulCompleteTickPeriods, ulCompletedSysTickDecrements, ulSysTickCTRL; TickType_t xModifiableIdleTime; /* Make sure the SysTick reload value does not overflow the counter. */ if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks ) { xExpectedIdleTime = xMaximumPossibleSuppressedTicks; } /* Stop the SysTick momentarily. The time the SysTick is stopped for is accounted for as best it can be, but using the tickless mode will inevitably result in some tiny drift of the time maintained by the kernel with respect to calendar time. */ portNVIC_SYSTICK_CTRL_REG &= ~portNVIC_SYSTICK_ENABLE_BIT; /* Calculate the reload value required to wait xExpectedIdleTime tick periods. -1 is used because this code will execute part way through one of the tick periods. */ ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + ( ulTimerCountsForOneTick * ( xExpectedIdleTime - 1UL ) ); if( ulReloadValue > ulStoppedTimerCompensation ) { ulReloadValue -= ulStoppedTimerCompensation; } /* Enter a critical section but don't use the taskENTER_CRITICAL() method as that will mask interrupts that should exit sleep mode. */ __disable_irq(); __dsb( portSY_FULL_READ_WRITE ); __isb( portSY_FULL_READ_WRITE ); /* If a context switch is pending or a task is waiting for the scheduler to be unsuspended then abandon the low power entry. */ if( eTaskConfirmSleepModeStatus() == eAbortSleep ) { /* Restart from whatever is left in the count register to complete this tick period. */ portNVIC_SYSTICK_LOAD_REG = portNVIC_SYSTICK_CURRENT_VALUE_REG; /* Restart SysTick. */ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT; /* Reset the reload register to the value required for normal tick periods. */ portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL; /* Re-enable interrupts - see comments above __disable_irq() call above. */ __enable_irq(); } else { /* Set the new reload value. */ portNVIC_SYSTICK_LOAD_REG = ulReloadValue; /* Clear the SysTick count flag and set the count value back to zero. */ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; /* Restart SysTick. */ portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT; /* Sleep until something happens. configPRE_SLEEP_PROCESSING() can set its parameter to 0 to indicate that its implementation contains its own wait for interrupt or wait for event instruction, and so wfi should not be executed again. However, the original expected idle time variable must remain unmodified, so a copy is taken. */ xModifiableIdleTime = xExpectedIdleTime; configPRE_SLEEP_PROCESSING( xModifiableIdleTime ); if( xModifiableIdleTime > 0 ) { __dsb( portSY_FULL_READ_WRITE ); __wfi(); __isb( portSY_FULL_READ_WRITE ); } configPOST_SLEEP_PROCESSING( xExpectedIdleTime ); /* Stop SysTick. Again, the time the SysTick is stopped for is accounted for as best it can be, but using the tickless mode will inevitably result in some tiny drift of the time maintained by the kernel with respect to calendar time. */ ulSysTickCTRL = portNVIC_SYSTICK_CTRL_REG; portNVIC_SYSTICK_CTRL_REG = ( ulSysTickCTRL & ~portNVIC_SYSTICK_ENABLE_BIT ); /* Re-enable interrupts - see comments above __disable_irq() call above. */ __enable_irq(); if( ( ulSysTickCTRL & portNVIC_SYSTICK_COUNT_FLAG_BIT ) != 0 ) { uint32_t ulCalculatedLoadValue; /* The tick interrupt has already executed, and the SysTick count reloaded with ulReloadValue. Reset the portNVIC_SYSTICK_LOAD_REG with whatever remains of this tick period. */ ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ) - ( ulReloadValue - portNVIC_SYSTICK_CURRENT_VALUE_REG ); /* Don't allow a tiny value, or values that have somehow underflowed because the post sleep hook did something that took too long. */ if( ( ulCalculatedLoadValue < ulStoppedTimerCompensation ) || ( ulCalculatedLoadValue > ulTimerCountsForOneTick ) ) { ulCalculatedLoadValue = ( ulTimerCountsForOneTick - 1UL ); } portNVIC_SYSTICK_LOAD_REG = ulCalculatedLoadValue; /* The tick interrupt handler will already have pended the tick processing in the kernel. As the pending tick will be processed as soon as this function exits, the tick value maintained by the tick is stepped forward by one less than the time spent waiting. */ ulCompleteTickPeriods = xExpectedIdleTime - 1UL; } else { /* Something other than the tick interrupt ended the sleep. Work out how long the sleep lasted rounded to complete tick periods (not the ulReload value which accounted for part ticks). */ ulCompletedSysTickDecrements = ( xExpectedIdleTime * ulTimerCountsForOneTick ) - portNVIC_SYSTICK_CURRENT_VALUE_REG; /* How many complete tick periods passed while the processor was waiting? */ ulCompleteTickPeriods = ulCompletedSysTickDecrements / ulTimerCountsForOneTick; /* The reload value is set to whatever fraction of a single tick period remains. */ portNVIC_SYSTICK_LOAD_REG = ( ( ulCompleteTickPeriods + 1UL ) * ulTimerCountsForOneTick ) - ulCompletedSysTickDecrements; } /* Restart SysTick so it runs from portNVIC_SYSTICK_LOAD_REG again, then set portNVIC_SYSTICK_LOAD_REG back to its standard value. The critical section is used to ensure the tick interrupt can only execute once in the case that the reload register is near zero. */ portNVIC_SYSTICK_CURRENT_VALUE_REG = 0UL; portENTER_CRITICAL(); { portNVIC_SYSTICK_CTRL_REG |= portNVIC_SYSTICK_ENABLE_BIT; vTaskStepTick( ulCompleteTickPeriods ); portNVIC_SYSTICK_LOAD_REG = ulTimerCountsForOneTick - 1UL; } portEXIT_CRITICAL(); } } #endif /* #if configUSE_TICKLESS_IDLE */ /*-----------------------------------------------------------*/ /* * Setup the SysTick timer to generate the tick interrupts at the required * frequency. */ #if configOVERRIDE_DEFAULT_TICK_CONFIGURATION == 0 void vPortSetupTimerInterrupt( void ) { /* Calculate the constants required to configure the tick interrupt. */ #if configUSE_TICKLESS_IDLE == 1 { ulTimerCountsForOneTick = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ); xMaximumPossibleSuppressedTicks = portMAX_24_BIT_NUMBER / ulTimerCountsForOneTick; ulStoppedTimerCompensation = portMISSED_COUNTS_FACTOR / ( configCPU_CLOCK_HZ / configSYSTICK_CLOCK_HZ ); } #endif /* configUSE_TICKLESS_IDLE */ /* Configure SysTick to interrupt at the requested rate. */ portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL; portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT | portNVIC_SYSTICK_ENABLE_BIT ); } #endif /* configOVERRIDE_DEFAULT_TICK_CONFIGURATION */ /*-----------------------------------------------------------*/ __asm uint32_t vPortGetIPSR( void ) { PRESERVE8 mrs r0, ipsr bx r14 } /*-----------------------------------------------------------*/ #if( configASSERT_DEFINED == 1 ) void vPortValidateInterruptPriority( void ) { uint32_t ulCurrentInterrupt; uint8_t ucCurrentPriority; /* Obtain the number of the currently executing interrupt. */ ulCurrentInterrupt = vPortGetIPSR(); /* Is the interrupt number a user defined interrupt? */ if( ulCurrentInterrupt >= portFIRST_USER_INTERRUPT_NUMBER ) { /* Look up the interrupt's priority. */ ucCurrentPriority = pcInterruptPriorityRegisters[ ulCurrentInterrupt ]; /* The following assertion will fail if a service routine (ISR) for an interrupt that has been assigned a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API function. ISR safe FreeRTOS API functions must *only* be called from interrupts that have been assigned a priority at or below configMAX_SYSCALL_INTERRUPT_PRIORITY. Numerically low interrupt priority numbers represent logically high interrupt priorities, therefore the priority of the interrupt must be set to a value equal to or numerically *higher* than configMAX_SYSCALL_INTERRUPT_PRIORITY. Interrupts that use the FreeRTOS API must not be left at their default priority of zero as that is the highest possible priority, which is guaranteed to be above configMAX_SYSCALL_INTERRUPT_PRIORITY, and therefore also guaranteed to be invalid. FreeRTOS maintains separate thread and ISR API functions to ensure interrupt entry is as fast and simple as possible. The following links provide detailed information: http://www.freertos.org/RTOS-Cortex-M3-M4.html http://www.freertos.org/FAQHelp.html */ configASSERT( ucCurrentPriority >= ucMaxSysCallPriority ); } /* Priority grouping: The interrupt controller (NVIC) allows the bits that define each interrupt's priority to be split between bits that define the interrupt's pre-emption priority bits and bits that define the interrupt's sub-priority. For simplicity all bits must be defined to be pre-emption priority bits. The following assertion will fail if this is not the case (if some bits represent a sub-priority). If the application only uses CMSIS libraries for interrupt configuration then the correct setting can be achieved on all Cortex-M devices by calling NVIC_SetPriorityGrouping( 0 ); before starting the scheduler. Note however that some vendor specific peripheral libraries assume a non-zero priority group setting, in which cases using a value of zero will result in unpredicable behaviour. */ configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue ); } #endif /* configASSERT_DEFINED */ 上面是freertos v900的代码,如何实现汇编跨平台编译 ?熟悉修改后的代码
05-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值