Политика Конфиденциальности Мудрости

隐私政策与数据保护

Политика Конфиденциальности Мудрости

Устранение мудрости уважает и защищает конфиденциальность всех пользователей, которые используют сервис. Мудрость ликвидации - это отдельная игра, которая не требует никакой личной информации о вас. Соглашаясь с Соглашением об использовании службы устранения мудрости, вы соглашаетесь со всем содержанием настоящей Политики конфиденциальности. Настоящая Политика конфиденциальности является неотъемлемой частью Соглашения об использовании службы устранения мудрости.

Сфера применения
а) Мудрость ликвидации - это отдельная игра, для которой пока не требуется личная информация. Если вам потребуется личная информация позже, эта политика конфиденциальности будет обновлена.

Использование информации
a) Устранение мудрости не будет предоставлять, продавать, передавать или обменивать вашу личную информацию какой-либо третьей стороне, кроме случаев, когда у вас есть на это предварительное разрешение, или третьему лицу и Устранение мудрости (включая филиалы Устранение мудрости) Обслуживать вас индивидуально или коллективно, и после того, как сервис закончится, ему будет запрещен доступ ко всем таким материалам, к которым он ранее имел доступ.

б) Устранение мудрости не позволяет какой-либо третьей стороне собирать, редактировать, продавать или распространять вашу личную информацию любым способом.

Раскрытие информации
а) Устранение мудрости не собирает никакой личной информации и не раскрывает никакой личной информации третьим лицам.

Информационная безопасность
а) Данные, сохраненные программой Устранение мудрости, являются локальными данными мобильного телефона и не будут загружены.

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
5.1.1 Оформление лабораторной работы Задача управления нелинейными объектами продолжает привлекать внимание исследователей несмотря на значительный прогресс, достигнутый в теории и практике автоматического управления. Традиционные подходы синтеза систем управления основываются на знании математической модели объекта. Нам необходимо знать как математическую структуру, так и параметры объекта, а также зачастую параметры и характеристики среды, в которой объект функционирует. В то же время, на практике математическая модель объекта и среды не всегда доступны в явной форме, либо создание формальной математической модели может оказаться слишком сложным и дорогим делом. Также в процессе эксплуатации параметры и характеристики объекта и окружающей среды могут существенно изменяться. В этих случаях традиционные методы синтеза и часто дают неудовлетворительные результаты с точки зрения качества и робастности системы управления. Таким образом, актуальной представляется разработка методов синтеза систем управления, не требующих полного априорного знания об объекте управления и условий его функционирования. Эти методы должны обеспечивать синтез системы управления по фактическим характеристикам и параметрам объекта, что также иметь возможность подстраиваться под изменяющиеся свойства объекта и условия окружающей среды. Подходящим инструментом для реализации алгоритмов управления с нужными свойствами является метод косвенного адаптивного управления с нейросетевой моделью объекта управления. В отличие от формальных математических моделей, нейросетевая может быть получена с помощью машинного обучения по множеству данных наблюдения за реальным объектом. Рассмотрим задачу моделирования существенно нелинейного объекта, реализовав как компьютерную имитационную модель на основе известной формальной математической модели, так и нейросетевую модель. Эти модели позволят приступить к задаче разработки метода синтеза нейросетевой системы управления нелинейным объектом. Описание заданий: Синтез нейронной сети с обратными связями для моделирования динамического объекта Методические указания включают: Описание задачи: на основе набора данных обучить нейросеть LSTM. В зависимости от варианта лабораторной работы можно либо предложить студентам самим смоделировать набор данных по математической модели (линейной или нелинейной) с заданием вида пробного сигнала (разные варианты), либо задан подготовленный набор данных . 1. Описать конкретный объект (здесь ссылка на pH). 2. Описать архитектуру и принцип обучения LSTM. 3. Описать критерии качества для задач регрессии MSE,RMSE,MAE, 4. Описать программу обучения и моделирования LSTM на Keras (Python). Выполнение лабораторной работы позволяет достичь следующих целей: 1. Изучить архитектуру и практическое применение глубоких нейронных сетей с обратными связями 2. Изучить особенности функционирования сети LSTM. Основные результаты выполнения лабораторной работы: Отчет, содержащий описание всех шагов выполнения работы со схемами, графиками и таблицей результатов Выполнение лабораторной работы проводится в среде Google Colab или другой, предоставляющей интерфейс Jupyter Notebook. 请用俄语扩写!!!
03-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值