题意:
给你一个长为n的数组求任意连续长为k的子区域最大最小值
区间极值,很裸的线段树。但是正解应该是单调队列,单调队列比线段树快近一倍,因为充分利用之前计算的值。
线段树差点超时
ACcode:
#include <iostream>
#include <cstdio>
#include <algorithm>
#define maxn 1000100
#define tmp (st<<1)
#define mid ((l+r)>>1)
#define lson l,mid,tmp
#define rson mid+1,r,tmp|1
#define pushup1(x) maxx[x]=max(maxx[tmp],maxx[tmp|1])
#define pushup2(x) minn[x]=min(minn[tmp],minn[tmp|1])
using namespace std;
int maxx[maxn<<2],minn[maxn<<2];
inline void build(int l,int r,int st){
if(l==r){
scanf("%d",&maxx[st]);
minn[st]=maxx[st];
return ;
}
build(lson);
build(rson);
pushup1(st);
pushup2(st);
}
inline int query(int L,int R,bool t,int l,int r,int st){
if(L<=l&&r<=R)return t?maxx[st]:minn[st];
if(t){
int ret=-0x3f3f3f3f;
if(L<=mid)ret=max(ret,query(L,R,t,lson));
if(R>mid)ret=max(ret,query(L,R,t,rson));
return ret;
}
else {
int ret=0x3f3f3f3f;
if(L<=mid)ret=min(ret,query(L,R,t,lson));
if(R>mid)ret=min(ret,query(L,R,t,rson));
return ret;
}
}
int main(){
int n,k;
scanf("%d%d",&n,&k);
build(1,n,1);
for(int i=k;i<=n;++i)
printf("%d%c",query(i-k+1,i,0,1,n,1),i==n?'\n':' ');
for(int i=k;i<=n;++i)
printf("%d%c",query(i-k+1,i,1,1,n,1),i==n?'\n':' ');
return 0;
}
利用优先队列实现单调队列
ACcode:
#include <iostream>
#include <cstdio>
#include <queue>
#include <vector>
#define maxn 1000100
using namespace std;
int a[maxn],maxx[maxn],minn[maxn],tot1,tot2;
struct cmp1{
bool operator()(const int x,const int y){
return a[x]>a[y];
}
};
struct cmp2{
bool operator()(const int x,const int y){
return a[x]<a[y];
}
};
priority_queue<int ,vector<int>,cmp1> dp1;
priority_queue<int ,vector<int>,cmp2> dp2;
int main(){
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
if(i<=k){
dp1.push(i);
dp2.push(i);
}
}
tot1=tot2=0;
maxx[++tot1]=a[dp1.top()];
minn[++tot2]=a[dp2.top()];
for(int i=k+1;i<=n;++i){
dp1.push(i);
dp2.push(i);
while(i-dp1.top()>=k)dp1.pop();
maxx[++tot1]=a[dp1.top()];
while(i-dp2.top()>=k)dp2.pop();
minn[++tot2]=a[dp2.top()];
}
for(int i=1;i<=n-k+1;++i)printf("%d%c",maxx[i],(i==n-k+1)?'\n':' ');
for(int i=1;i<=n-k+1;++i)printf("%d%c",minn[i],(i==n-k+1)?'\n':' ');
return 0;
}