0:将图片设置好标号(从0开始的连续自然数)
1:首先需要将图片转换成需要的数据格式
#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs
# EXAMPLE=examples/imagenet
# DATA=data/ilsvrc12
TOOLS=build/tools
# TRAIN_DATA_ROOT=/path/to/imagenet/train/
# VAL_DATA_ROOT=/path/to/imagenet/val/
TRAIN_DATA_ROOT=/examples/jb/train/
VAL_DATA_ROOT=/examples/jb//val/
LABEL_ROOT=/examples/jb
SAVE_DATA_ROOT=/examples/jb/data
# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
# RESIZE=false
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=32
RESIZE_WIDTH=32
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0
fi
if [ ! -d "$TRAIN_DATA_ROOT" ]; then
echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet training data is stored."
exit 1
fi
if [ ! -d "$VAL_DATA_ROOT" ]; then
echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet validation data is stored."
exit 1
fi
echo "Creating train lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$LABEL_ROOT/train.txt \
$SAVE_DATA_ROOT/train_lmdb
echo "Creating val lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$VAL_DATA_ROOT \
$LABEL_ROOT/val.txt \
$SAVE_DATA_ROOT/val_lmdb
echo "Done."
2:计算训练样本的均值(彩色图时需要)
#!/usr/bin/env sh
# Compute the mean image from the imagenet training leveldb
# N.B. this is available in data/ilsvrc12
./build/tools/compute_image_mean examples/jb/data/train_lmdb \
examples/jb/data/image_mean.binaryproto
echo "Done."
3:定义好网络的结构
name: "AlexNet" layers { name: "data" type: DATA top: "data" top: "label" data_param { source: "examples/jb/data/train_lmdb" backend: LMDB batch_size: 256 } transform_param { crop_size: 227 mean_file: "examples/jb/data/image_mean.binaryproto" mirror: true } include: { phase: TRAIN } } layers { name: "data" type: DATA top: "data" top: "label" data_param { source: "examples/jb/data/val_lmdb" backend: LMDB batch_size: 50 } transform_param { crop_size: 227 mean_file: "examples/jb/data/image_mean.binaryproto" mirror: false } include: { phase: TEST } } layers { name: "conv1" type: CONVOLUTION bottom: "data" top: "conv1" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 64 kernel_size: 5 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layers { name: "relu1" type: RELU bottom: "conv1" top: "conv1" } layers { name: "norm1" type: LRN bottom: "conv1" top: "norm1" lrn_param { local_size: 9 alpha: 0.0001 beta: 0.75 } } layers { name: "pool1" type: POOLING bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layers { name: "conv2" type: CONVOLUTION bottom: "pool1" top: "conv2" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 64 pad: 2 kernel_size: 5 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layers { name: "relu2" type: RELU bottom: "conv2" top: "conv2" } layers { name: "norm2" type: LRN bottom: "conv2" top: "norm2" lrn_param { local_size: 9
#!/usr/bin/env sh echo "begin to train the net!" ./build/tools/caffe train \ --solver=examples/jb/solver.prototxt echo "the net is finish"
alpha: 0.0001 beta: 0.75 }}layers { name: "pool2" type: POOLING bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 }}layers { name: "conv3" type: CONVOLUTION bottom: "pool2" top: "conv3" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 64 pad: 1#!/usr/bin/env sh echo "begin to train the net!" ./build/tools/caffe train \ --solver=examples/jb/solver.prototxt echo "the net is finish"
kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } }}layers { name: "relu3" type: RELU bottom: "conv3" top: "conv3"}layers { name: "conv4" type: CONVOLUTION bottom: "conv3" top: "conv4" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 32 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } }}layers { name: "relu4" type: RELU bottom: "conv4" top: "conv4"}layers { name: "fc6" type: INNER_PRODUCT bottom: "conv4" top: "fc6" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 inner_product_param { num_output: 43 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } }}layers { name: "relu6" type: RELU bottom: "fc6" top: "fc6"}layers { name: "accuracy" type: ACCURACY bottom: "fc6" bottom: "label" top: "accuracy" include: { phase: TEST }}layers { name: "loss" type: SOFTMAX_LOSS bottom: "fc6" bottom: "label" top: "loss"}4:定义好sover文件
net: "examples/jb/train_val.prototxt" test_iter: 1000 test_interval: 1000 base_lr: 0.01 lr_policy: "step" gamma: 0.1 stepsize: 100000 display: 20 max_iter: 450000 momentum: 0.9 weight_decay: 0.0005 snapshot: 10000 snapshot_prefix: "examples/jb/models/caffe_alexnet_train" solver_mode: GPU
5:训练网络#!/usr/bin/env sh echo "begin to train the net!" ./build/tools/caffe train \ --solver=examples/jb/solver.prototxt echo "the net is finish"
这样就完成了网络的整个训练过程,之后可以利用这个模型进行测试。
参考博客:http://blog.youkuaiyun.com/hebustkyl/article/details/45534219