5 Recent Publications

 
 
 

  5 Recent Publications

 
 
 

 

 

  1.  J. F. P. Kooij, G. Englebienne and D. M. Gavrila. Mixture of Switching Linear Dynamics to Discover Behavior Patterns in Object Tracks. IEEE Trans. on Pattern Analysis and Machine Intelligence., DOI 10.1109/TPAMI.2015.2443801, 2015.

  1.  J. P. F. Kooij, G. Englebienne and D. M. Gavrila. Identifying Multiple Objects from their Appearance in Inaccurate DetectionsComputer Vision and Image Understanding, vol.136, July, pp.103-116, 2015.

  1.  F. Flohr, M. Dumitru-Guzu, J. F. P. Kooij and D. M. Gavrila. A probabilistic framework for joint pedestrian head and body orientation estimationIEEE Trans. on Intelligent Transportation Systems, vol.16, nr.4, pp.1872-1882, 2015.

  1. M. C. Liem and D. M. Gavrila. Coupled Person Orientation Estimation and Appearance Modeling using Spherical HarmonicsImage and Vision Computing, vol.32, nr.10, pp.728-738, 2014.

  1. M. C. Liem and D. M. Gavrila. Joint Multi-person Detection and Tracking from Overlapping Cameras. Computer Vision and Image Understanding, nr.128, pp.36-50, 2014.

 

 

 
 
 
 
 

   5 Selected Publications

 
 
 

 

 

  1. C. G. Keller and D.M. Gavrila. Will the Pedestrian Cross? A Study on Pedestrian Path Prediction. IEEE Trans. on Intelligent Transportation Systems. vol.15, nr.2, pp.494-506, 2014.

  1. M. Hofmann and D.M. Gavrila. Multi-view 3D Human Pose Estimation in Complex Environment. International Journal of Computer Vision (IJCV), vol.96, nr.1, pp.103-124, 2012.

  1. M. Enzweiler and D. M. Gavrila.  A Multi-Level Mixture-of-Experts Framework for Pedestrian ClassificationIEEE Trans. on Image Processing, vol.20, nr.10, pp.2967-2979, 2011.

  1. C. Keller, M. Enzweiler, M. Rohrbach, D.-F. Llorca, C. Schnörr and D.M. Gavrila. The Benefits of Dense Stereo for Pedestrian Detection. IEEE Trans. on Intelligent Transportation Systems, vol.12, nr.4, pp.1096-1106, 2011.

  1. J. P. F. Kooij, G. Englebienne and D.M. Gavrila. A Non-parametric Hierarchical Model to Discover Behavior Dynamics from TracksProc. of the European Conference on Computer Vision, vol. 6, pp.270-283, Florence, Italy, 2012.

 

 

 
 
 

 Ph.D. Thesis

 
 
 

 

 

  • D. M. Gavrila, Vision-based 3-D Tracking of Humans in ActionPh.D. Thesis, Department of Computer Science, University of Maryland, College Park, 1996.

 

 

 
 
 

 Book Chapters

 
 
 

 

 

  1. T. Dang, J. Desens, U. Franke, D. M. Gavrila, L. Schaefers, and W. Ziegler Steering and Evasion Assist. In Handbook of Intelligent Vehicles, Ed. EskandarianSpringer Verlag, 2012.

  1. U. Franke, D. M. Gavrila, A. Gern, S. Görzig, R. Janssen, F. Paetzold and C. Wöhler,From Door to Door - Principles and Applications of Computer Vision for Driver Assistant Systems, chapter 6 in Intelligent Vehicle Technologies, eds. L. Vlacic and F. Harashima and M. Parent, Butterworth Heinemann, Oxford, 2001

  1. Y. Yacoob, L. Davis, M. Black, D. M. Gavrila, T. Horprasert and C. Marimoto, Looking at People in Action - An Overview, in Computer Vision for Human-Machine Interaction,eds. R. Cipolla and A. Pentland, Cambridge University Press, 1998.

 

  1. U. Franke, D. M. Gavrila, S. Görzig, F. Lindner, F. Paetzold and C. Wöhler,Bildverstehen im Innerstädtischen Verkehr (in German), in Autonome Mobile Systeme, eds. H. Wörn, R. Dillmann and D. Heinrich, Springer Verlag, 1998.

 

  1. D. M. Gavrila, 3-D Model-based Tracking of Humans in Action, in Advances in Image Understanding, eds. K. Bowyer and N. Ahuja, IEEE Computer Society Press, 1996.

 

  1. D. M. Gavrila, R-Tree Index Optimization, in Advances in GIS Research, eds. T. Waugh and R. Healey, Taylor and Francis, 1994. Also, CS-TR-3292, University of Maryland, College Park, 1994.

 

 

 
 
 

  Journals

 
 

 

 

  1.  J. F. P. Kooij, G. Englebienne and D. M. Gavrila. Mixture of Switching Linear Dynamics to Discover Behavior Patterns in Object Tracks. IEEE Trans. on Pattern Analysis and Machine Intelligence., DOI 10.1109/TPAMI.2015.2443801, 2015.

  1.  J. P. F. Kooij, G. Englebienne and D. M. Gavrila. Identifying Multiple Objects from their Appearance in Inaccurate DetectionsComputer Vision and Image Understanding, vol.136, July, pp.103-116, 2015.

  1.  F. Flohr, M. Dumitru-Guzu, J. F. P. Kooij and D. M. Gavrila. A probabilistic framework for joint pedestrian head and body orientation estimationIEEE Trans. on Intelligent Transportation Systems, vol.16, nr.4, pp.1872-1882, 2015.

  1. M. C. Liem and D. M. Gavrila. Joint Multi-person Detection and Tracking from Overlapping Cameras. Computer Vision and Image Understanding, nr.128, pp.36-50, 2014.

  1. M. C. Liem and D. M. Gavrila. Coupled Person Orientation Estimation and Appearance Modeling using Spherical HarmonicsImage and Vision Computing, vol.32, nr.10, pp.728-738, 2014.

  1. C. Keller and D.M. Gavrila. Will the Pedestrian Cross? A Study on Pedestrian Path Prediction. IEEE Transactions on Intelligent Transportation Systems. vol.15, nr.2, pp.494-506, 2014.

  1. M. Hofmann and D.M. Gavrila. Multi-view 3D Human Pose Estimation in Complex Environment. International Journal of Computer Vision, vol.96, nr.1, pp.103-124, 2012.

  1. M. Enzweiler and D. M. Gavrila.  A Multi-Level Mixture-of-Experts Framework for Pedestrian ClassificationIEEE Trans. on Image Processing, vol.20, nr.10, pp.2967-2979, 2011.

  1. M. Hofmann and D.M. Gavrila. 3D Human Shape Model Adaptation by Automatic Frame Selection and Batch-Mode Optimization. Computer Vision Image Understanding, vol.115, nr.11, pp.1559-1570, 2011.

  1. C. Keller, M. Enzweiler, M. Rohrbach, D.-F. Llorca, C. Schnörr and D.M. Gavrila. The Benefits of Dense Stereo for Pedestrian Detection. IEEE Trans. on Intelligent Transportation Systems, vol.12, nr.4, pp.1096-1106, 2011.

  1. C. Keller, T. Dang, A. Joos, C. Rabe, H. Fritz, and D.M. Gavrila, Active Pedestrian Safety by Automatic Braking and Evasive SteeringIEEE Trans. on Intelligent Transportation Systems, vol.12, nr.4, pp.1292-1304, 2011.

  1. M. Enzweiler and D. M. Gavrila. Monocular Pedestrian Detection: Survey and ExperimentsIEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2009.

  1. S. Munder, C. Schnörr and D.M. Gavrila. Pedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models. IEEE Transactions on Intelligent Transportation Systems, vol.9, nr.2, pp.333-343, 2008.

  1. D. M. Gavrila. A Bayesian, Exemplar-based Approach to Hierarchical Shape Matching.IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, no.8 (August), 2007.

  1. D. M. Gavrila and S. Munder. Multi-Cue Pedestrian Detection and Tracking from a Moving VehicleInternational Journal of Computer Vision, Springer Verlag, vol.73, no.1 (June), pp.41-59, 2007.

  1. S. Munder and D. M. Gavrila. An Experimental Study on Pedestrian Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, nr 11, pp. 1863-1868, 2006. 

  1. W. van der Mark and D. M. Gavrila. Real-Time Dense Stereo for Intelligent Vehicles.IEEE Transactions on Intelligent Transportation Systems, vol. 7, nr 1, pp.38-50, March 2006.

  1. D. M. Gavrila, Sensor-based Pedestrian Protection, IEEE Intelligent Systems, vol.16, nr.6, pp.77-81, 2001.

  1. D. M. Gavrila, U. Franke, S. Görzig and C. Wöhler, Real-time Vision for Intelligent Vehicles, IEEE Instrumentation and Measurement Magazine, vol.4, nr.2, pp.22-27, June, 2001.

 

  1. D. M. Gavrila, The Visual Analysis of Human Movement: A Survey, Computer Vision and Image Understanding, Academic Press, vol. 73, nr. 1, pp. 82-98, 1999.

  1. U. Franke, D. M. Gavrila, S. Görzig, F. Lindner, F. Paetzold and C. Wöhler, Autonomous Driving goes Downtown, IEEE Intelligent Systems, vol.13, nr.6, pp. 40-48, 1998.

  1. D. M. Gavrila and F. C. A. Groen, 3-D Object recognition from 2-D Images using Geometric Hashing, Pattern Recognition Letters, vol. 13, nr. 4, pp. 263-278, 1992.

 

 

 
 
 
 
 

Conferences and Symposia

 
 
 

 

 

  1.  J. F. P. Kooij, N. Schneider, F. Flohr and D. M. Gavrila. Context-based Pedestrian Path Prediction. Proc. of the ECCV, Part VI, LNCS, vol.8694, pp.618-633, Springer, 2014.

  1. V. Evers; N. Menezes, L. Merino, D. Gavrila; F. Nabais, M. Pantic, P. Alvito and D. Karreman. The Development and Real-World Deployment of FROG; the Fun Robotic Outdoor GuideProc. of the ACM/IEEE International Conference on Human-Robot Interaction, 2014

  1.  J.F.P. Kooij, N. Schneider and D.M. Gavrila. Analysis of Pedestrian Dynamics form a Vehicle Perspective. In Proc. of the IEEE Intelligent Vehicles Symposium (IV), Dearborn, USA, 2014.

  1.  F. Flohr, M. Dumitru-Guzu, J.F.P. Kooij and D.M. Gavrila. Joint probabilistic head and body orientation estimation. In Proc. of the IEEE Intelligent Vehicles Symposium (IV), Dearborn, USA, 2014.

  1. M. Liem and D. M. Gavrila. A comparative study on multi-person tracking using overlapping cameras. Proc. of the International Conference on Computer Vision Systems (St.Petersburg, Russia), Lecture Notes in Computer Science, vol. 7963, 2013.

  1. M. Liem and D. M. Gavrila. Person Appearance Modeling and Orientation Estimation using Spherical Harmonics. Proc. of the IEEE International Conference on Automatic Face & Gesture, Shanghai, China, 2013. FG2013 Best Student Paper Honorable Mention Award.

  1. F. Flohr and D. M. Gavrila. PedCut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues. Proc. of the British Machine Vision Conference, Bristol, UK, 2013.

  1. N. Schneider and D. M. Gavrila. Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative StudyIn Lecture Notes in Computer Science: Proc. of the German Conference on Pattern Recognition (GCPR), vol. 8142, Springer, 2013

  1. J. P. F. Kooij, G. Englebienne and D.M. Gavrila. A Non-parametric Hierarchical Model to Discover Behavior Dynamics from TracksProc. of the European Conference on Computer Vision, vol. 6, pp.270-283, Florence, Italy, 2012.

  1. C. Keller, C. Hermes and D.M. Gavrila. Will the pedestrian cross? Probabilistic Path Prediction based on Learned Motion Features. In “Pattern Recognition: DAGM Symposium: Frankfurt”, Lecture Notes in Computer Science, vol. 6835, pp. 386-395, 2011.  DAGM PRIZE

  1. M. Liem and D. M. Gavrila. Multi-Person Localization and Track Assignment in Overlapping Camera Views. In “Pattern Recognition: DAGM Symposium: Frankfurt”,Lecture Notes in Computer Science, vol. 6835, pp. 173-183, 2011.

  1. C. Keller, M. Enzweiler, and D. M. Gavrila. A New Benchmark for Stereo-based Pedestrian Detection. Proc. of the IEEE Intelligent Vehicles Symposium, Baden-Baden, 2011.

  1. M. Enzweiler and D.M. Gavrila. Integrated Pedestrian Classification and Orientation Estimation. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, pp.982-989, 2010

  1. M. Enzweiler, A. Eigenstetter, B. Schiele and D.M. Gavrila. Multi-Cue Pedestrian Classification with Partial Occlusion Handling. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, 2010.

  1. M. Hofmann and D.M. Gavrila. Multi-view 3D Human Upper Body Pose Estimation combining Single-frame Recovery, Temporal Integration and Model AdaptationProc. of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA2009

  1. M. Liem and D. M. Gavrila. Multi-person tracking with overlapping cameras in complex, dynamic environments. Proc. of the British Machine Vision Conference (BMVC), London, 2009.

  1. M. Rohrbach, M. Enzweiler and D.M. Gavrila. High-Level Fusion of Depth and Intensity for Pedestrian Classification. In “Pattern Recognition: DAGM Symposium Jena“,Lecture Notes in Computer Science, vol. 5748, pp.101-110, 2009.

  1. C. Keller, D. Fernandez-Llorca and D.M. Gavrila. Dense Stereo-based ROI Generation for Pedestrian Detection. In “Pattern Recognition: DAGM Symposium Jena“, Lecture Notes in Computer Science, vol. 5748, pp.81-90, 2009.

  1. M. Hofmann and D.M. Gavrila, Single-frame 3D Human Pose Recovery from Multiple Views. In “Pattern Recognition: DAGM Symposium Jena“, Lecture Notes in Computer Science, vol. 5748, pp.71-80, 2009.

 

  1. M. Enzweiler, P. Kanter and D. M. Gavrila. Monocular Pedestrian Recognition Using Motion Parallax. Proc. of the IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 2008.

  1. M. Enzweiler and D. M. Gavrila. A Mixed Generative-Discriminative Framework for Pedestrian Classification. Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008.

  1. W. Zajdel, D. Krijnders, T. Andringa and D.M. Gavrila. CASSANDRA: Audio-Video Sensor Fusion for Aggression Detection. IEEE Int. Conf. on Advanced Video and Signal based Surveillance (AVSS), London (UK), 2007. BEST PAPER AWARD

  1. L. Andreone, A. Guarise, F. Lilli, D. M. Gavrila and M. Pieve. “Cooperative Systems for vulnerable road users: The Concept Of The WATCH-OVER Project”, ITS World Congress 2006

 

  1. M. Mählisch, M. Oberländer, O. Löhlein, D. M. Gavrila and W. Ritter. A Multiple Detector Approach to Low-Resolution FIR Pedestrian Recognition. Proc. of the IEEE Intelligent Vehicles Symposium, Las Vegas, USA, 2005.

  1. J. Giebel, D. M. Gavrila and C. Schnörr. A Bayesian Framework for Multi-Cue 3D Object Tracking, Proc. of the European Conference on Computer Vision, Prague, Czech Republic, 2004.

  1. D. M. Gavrila, J. Giebel and S. Munder. Vision-based Pedestrian Detection: the PROTECTOR System, Proc. of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 2004.

See more recentIJCV’07 article

  1. H. Sunyoto, W. van der Mark and D. M. Gavrila. A Comparative Study of Fast Dense Stereo Vision Algorithms, Proc. of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 2004.

See more recent Trans onITS ’06 article

  1. P. Marchal, D. M. Gavrila, L. Letellier, M.-M. Meinecke, R. Morris and M. Töns.SAVE-U: An innovative sensor platform for Vulnerable Road User protection, Proc. of the World Congress on Intelligent Transportation Systems (ITS), Madrid, Spain, 2003.

  1. R. Cicilloni, S. J. Deutschle, K. M. Oltersdorf and D. M. Gavrila. Results of Vulnerable Road User Protection Systems in PROTECTOR. Proc. of the World Congress on Intelligent Transportation Systems (ITS). Madrid, Spain, 2003.

  1. M.-M. Meinecke, M. Obojski, M. Töns, R. Dörfler, P. Marchal, L. Letellier, D. M. Gavrila and R. Morris. Approach for Protection of Vulnerable Road Users using Sensor Fusion TechniquesProc. of the International Radar Symposium, Dresden, Germany, 2003.

  1. C. von Bank, D. M. Gavrila and C. Wöhler. A Visual Quality Inspection System Based on a Hierarchical 3D Pose Estimation Algorithm, In “Pattern Recognition: DAGM Symposium Magdeburg”, Lecture Notes in Computer Science, vol. 2781, pp.179-186, 2003.

  1. J. Giebel and D. M. Gavrila. Multimodal Shape Tracking using Point Distribution Models. In “Pattern Recognition: DAGM Symposium Zürich”, ed. L. van Gool. Lecture Notes on Computer Science, vol. 2449, pp. 1-8, 2002.

  1. D. M. Gavrila and J. Giebel. Shape-based Pedestrian Detection and Tracking. Proc. of the IEEE Intelligent Vehicles Symposium, Paris, France, 2002.

See more recentIJCV’07 article

  1. S. Hezel, D. M. Gavrila, A. Kugel and R. Männer. FPGA-based Template Matching using Distance Transforms. Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, U.S.A., 2002.

  1. D. M. Gavrila and J. Giebel, Virtual Sample Generation for Template-based Shape Matching, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 676-681, Kauai, U.S.A., 2001.

  1. D. M. Gavrila, M. Kunert and U. Lages, A multi-sensor approach for the protection of vulnerable traffic participants - the PROTECTOR project, Proc. of the IEEE Instrumentation and Measurement Technology Conference, vol. 3, pp. 2044-2048, Budapest, Hungary, 2001.

  1. D. M. Gavrila, J. Giebel and H. Neumann, Learning Shape Models from Examples, In “Pattern Recognition: DAGM Symposium Münich”, Lecture Notes on Computer Science, vol. 2449, pp. 369-376, 2001

  1. D. M. Gavrila, Pedestrian Detection from a Moving Vehicle, Proc. of European Conference on Computer Vision, pp. 37-49, Dublin, Ireland, 2000

  1. U. Franke, D. M. Gavrila and S. Görzig,  Vision-based Driver Assistance in Urban Traffic, Proc. of World Congress on Intelligent Transportation Systems (ITS), Turin, Italy, 2000.

 

  1. D. M. Gavrila, U. Franke, S. Görzig and C. Wöhler, Visual Object Recognition for Intelligent Vehicles, Proc. of the 9-th Aachen Colloquium, vol. I, pp. 589-598, Aachen, Germany, 2000.

 

  1. D. M. Gavrila and V. Philomin, Real-time Object Detection for Smart Vehicles, Proc. of IEEE International Conference on Computer Vision, pp. 87-93, Kerkyra, Greece, 1999.

Please cite the earlierIV’98 paper

  1. D. M. Gavrila, Traffic Sign Recognition Revisited, Proc. of the 21st DAGM Symposium für Mustererkennung, pp. 86-93, Springer Verlag, Bonn, Germany, 1999.

  1. D. M. Gavrila, Multi-feature Hierarchical Template Matching Using Distance Transforms, Proc. of IEEE International Conference on Pattern Recognition, pp. 439-444, Brisbane, Australia, 1998.

  1. D. M. Gavrila and V. Philomin, Real-time Object Detection using Distance Transforms,Proc. of IEEE Intelligent Vehicles Symposium, pp. 274-279, Stuttgart, Germany, 1998.

  1. D. M. Gavrila and L. S. Davis, 3-D Model-based Tracking of Humans in Action: a Multi-view Approach, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 73-80, San Francisco, U.S.A., 1996.

Please cite my more extensivePhD. Thesis

  1. D. M. Gavrila, Hermite Deformable Contours, Proc. of IEEE International Conference on Pattern Recognition, pp. 130-135, Vienna, Austria, 1996.

  1. D. M. Gavrila and L. S. Davis, 3-D Model-based Tracking of Human Upper Body MovementProc. of the IEEE International Symposium on Computer Vision, pp. 253-258,Coral Gables, U.S.A., 1995.

 

 

 

 
 
 

 Workshops

 
 
 
  1. D. M. Gavrila, The Analysis of Human Motion and its Application for Visual Surveillance, Proc. of the 2nd IEEE International Workshop on Visual Surveillance, pp. 3-5, Fort Collins, U.S.A., 1999.

 

  1. D. M. Gavrila and L. S. Davis, Tracking Humans in Action: A 3-D Model-based Approach,Proc. of the ARPA Image Understanding Workshop, pp. 737-746, Palm Springs, U.S.A., 1996.

 

  1. D. M. Gavrila and L. S. Davis, Towards 3-D Model-based Tracking and Recognition of Human Movement, Proc. of the IEEE International Workshop on Face and Gesture Recognition, pp. 272-277, Zurich, Switzerland, 1995.

 

  1. D. M. Gavrila and L. S. Davis, Fast Correlation Matching in Large (Edge) Image Databases, Proc. of the 23rd AIPR Workshop, Washington D.C., U.S.A., 1994. Also, CS-TR-3334, University of Maryland, College Park, 1994.

 

 

 

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值