自从tensorflow进入2.0时代,之前的程序用2.0的tf跑就会报出一大堆的deprecated warning,要求使用 keras.xx instead...看来tensorflow是铁了心要推keras上正统的宝座,有必要学习一下keras的使用了。
官方文档:https://keras-cn.readthedocs.io/en/latest/
参考1,keras callback:https://spaces.ac.cn/archives/5765
Tensorflow 2.0: models migration and new design:https://pgaleone.eu/tensorflow/gan/2018/11/04/tensorflow-2-models-migration-and-new-design/
2.0与1.x比较:https://www.tinymind.cn/articles/3844
参考2:https://blog.youkuaiyun.com/sinat_26917383/article/details/72857454
1-keras思维导图
1.1-网络结构
1.2-网络配置
1.3-预处理
1.4-模型的节点信息提取
# 节点信息提取
config = model.get_config() # 把model中的信息,solver.prototxt和train.prototxt信息提取出来
model = Model.from_config(config) # 还回去
# or, for Sequential:
model = Sequential.from_config(config) # 重构一个新的Model模型,用去其他训练,fine-tuning比较好
1.5-模型概况查询(包括权重查询)
# 1、模型概括打印
model.summary()
# 2、返回代表模型的JSON字符串,仅包含网络结构,不包含权值。可以从JSON字符串中重构原模型:
from models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
# 3、model.to_yaml:与model.to_json类似,同样可以从产生的YAML字符串中重构模型
from models import model_from_yaml
yaml_string = model.to_yaml()
model = model_from_yaml(yaml_string)
# 4、权重获取
model.get_layer() #依据层名或下标获得层对象
model.get_weights() #返回模型权重张量的列表,类型为numpy array
model.set_weights() #从numpy array里将权重载入给模型,要求数组具有与model.get_weights()相同的形状。
# 查看model中Layer的信息
model.layers 查看layer信息
1.6-模型保存与加载
model.save_weights(filepath)
# 将模型权重保存到指定路径,文件类型是HDF5(后缀是.h5)
model.load_weights(filepath, by_name=False)
# 从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。
# 如果想将权重载入不同的模型(有些层相同)中,则设置by_name=True,只有名字匹配的层才会载入权重
2-keras+GPU
本节来源于:深度学习theano/tensorflow多显卡多人使用问题集(参见:Limit the resource usage for tensorflow backend · Issue #1538 · fchollet/keras · GitHub)
在使用keras时候会出现总是占满GPU显存的情况,可以通过重设backend的GPU占用情况来进行调节。
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))
需要注意的是,虽然代码或配置层面设置了对显存占用百分比阈值,但在实际运行中如果达到了这个阈值,程序有需要的话还是会突破这个阈值。换而言之如果跑在一个大数据集上还是会用到更多的显存。以上的显存限制仅仅为了在跑小数据集时避免对显存的浪费而已。
3-keras模型训练与保存
filepath = 'model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
# fit model
model.fit(x, y, epochs=20, verbose=2, callbacks=[checkpoint], validation_data=(x, y))
save_best_only打开之后,会如下:
ETA: 3s - loss: 0.5820Epoch 00017: val_loss did not improve
如果val_loss 提高了就会保存,没有提高就不会保存。
4-keras+tensorboard
RUN = RUN + 1 if 'RUN' in locals() else 1 # locals() 函数会以字典类型返回当前位置的全部局部变量。
LOG_DIR = model_save_path + '/training_logs/run{}'.format(RUN)
LOG_FILE_PATH = LOG_DIR + '/checkpoint-{epoch:02d}-{val_loss:.4f}.hdf5' # 模型Log文件以及.h5模型文件存放地址
tensorboard = TensorBoard(log_dir=LOG_DIR, write_images=True)
checkpoint = ModelCheckpoint(filepath=LOG_FILE_PATH, monitor='val_loss', verbose=1, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
history = model.fit_generator(generator=gen.generate(True), steps_per_epoch=int(gen.train_batches / 4),
validation_data=gen.generate(False), validation_steps=int(gen.val_batches / 4),
epochs=EPOCHS, verbose=1, callbacks=[tensorboard, checkpoint, early_stopping])
都是在回调函数中起作用:
EarlyStopping patience:
- 当earlystop被激活(如发现loss相比上一个epoch训练没有下降),则经过patience个epoch后停止训练。
- mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值停止下降则中止训练。在max模式下,当检测值不再上升则停止训练。
模型检查点ModelCheckpoint:
- save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
- mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
- save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
- period:CheckPoint之间的间隔的epoch数
可视化tensorboard write_images: 是否将模型权重以图片的形式可视化
其他内容可参考keras中文文档
5-keras的Sequential模型
序贯模型是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不分叉。
Sequential模型的基本组件
一般需要:
- 1、model.add,添加层;
- 2、model.compile,模型训练的BP模式设置;
- 3、model.fit,模型训练参数设置 + 训练;
- 4、模型评估
- 5、模型预测
1. add:添加层——train_val.prototxt
add(self, layer)
# 譬如:
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dropout(0.25))
add里面只有层layer的内容,当然在序贯式里面,也可以model.add(other_model)加载另外模型,在函数式里面就不太一样,详见函数式。
2、compile 训练模式——solver.prototxt文件
compile(self, optimizer, loss, metrics=None, sample_weight_mode=None)
其中:
optimizer: 字符串(预定义优化器名)或优化器对象,参考优化器
loss: 字符串(预定义损失函数名)或目标函数,参考损失函数
metrics: 列表,包含评估模型在训练和测试时的网络性能的指标,典型用法是metrics=[‘accuracy’]
sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。
默认为“None”,代表按样本赋权(1D权)。在下面fit函数的解释中有相关的参考内容。
kwargs: 使用TensorFlow作为后端请忽略该参数,若使用Theano作为后端,kwargs的值将会传递给 K.function
注意:
模型在使用前必须编译,否则在调用fit或evaluate时会抛出异常。
3、fit 模型训练参数+训练——train.sh+soler.prototxt(部分)
fit(self, x, y, batch_size=32, epochs=10, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
本函数将模型训练nb_epoch轮,其参数有:
- x:输入数据。如果模型只有一个输入,那么x的类型是numpy
- array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array
- y:标签,numpy array
- batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。
- epochs:整数,训练的轮数,每个epoch会把训练集轮一遍。
- verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
- callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
- validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。
- validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。
- shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。
- class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
- sample_weight:权值的numpy
- array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=‘temporal’。
- initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。
- fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
注意:
要与之后的fit_generator做区别,两者输入x/y不同。
4.evaluate 模型评估
evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)
本函数按batch计算在某些输入数据上模型的误差,其参数有:
- x:输入数据,与fit一样,是numpy array或numpy array的list
- y:标签,numpy array
- batch_size:整数,含义同fit的同名参数
- verbose:含义同fit的同名参数,但只能取0或1
- sample_weight:numpy array,含义同fit的同名参数
- 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。
如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1
5 predict 模型评估
predict(self, x, batch_size=32, verbose=0)
predict_classes(self, x, batch_size=32, verbose=1)
predict_proba(self, x, batch_size=32, verbose=1)
本函数按batch获得输入数据对应的输出,其参数有:
函数的返回值是预测值的numpy array
predict_classes:本函数按batch产生输入数据的类别预测结果;
predict_proba:本函数按batch产生输入数据属于各个类别的概率
6 on_batch 、batch的结果,检查
train_on_batch(self, x, y, class_weight=None, sample_weight=None)
test_on_batch(self, x, y, sample_weight=None)
predict_on_batch(self, x)
- train_on_batch:本函数在一个batch的数据上进行一次参数更新,函数返回训练误差的标量值或标量值的list,与evaluate的情形相同。
- test_on_batch:本函数在一个batch的样本上对模型进行评估,函数的返回与evaluate的情形相同
- predict_on_batch:本函数在一个batch的样本上对模型进行测试,函数返回模型在一个batch上的预测结果
7 fit_generator
#利用Python的生成器,逐个生成数据的batch并进行训练。
#生成器与模型将并行执行以提高效率。
#例如,该函数允许我们在CPU上进行实时的数据提升,同时在GPU上进行模型训练
# 参考链接:http://keras-cn.readthedocs.io/en/latest/models/sequential/
有了该函数,图像分类训练任务变得很简单。
fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)
# 案例:
def generate_arrays_from_file(path):
while 1:
f = open(path)
for line in f:
# create Numpy arrays of input data
# and labels, from each line in the file
x, y = process_line(line)
yield (x, y)
f.close()
model.fit_generator(generate_arrays_from_file('/my_file.txt'),
samples_per_epoch=10000, epochs=10)
其他的两个辅助的内容:
evaluate_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False)
predict_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False, verbose=0)
- evaluate_generator:本函数使用一个生成器作为数据源评估模型,生成器应返回与test_on_batch的输入数据相同类型的数据。该函数的参数与fit_generator同名参数含义相同,steps是生成器要返回数据的轮数。
- predcit_generator:本函数使用一个生成器作为数据源预测模型,生成器应返回与test_on_batch的输入数据相同类型的数据。该函数的参数与fit_generator同名参数含义相同,steps是生成器要返回数据的轮数。
6-keras的Model模型
来自keras中文文档:http://keras-cn.readthedocs.io/en/latest/
比序贯模型要复杂,但是效果很好,可以同时/分阶段输入变量,分阶段输出想要的模型;
一句话,只要你的模型不是类似VGG一样一条路走到黑的模型,或者你的模型需要多于一个的输出,那么你总应该选择函数式模型。
不同之处:
书写结构完全不一致
函数式模型基本属性与训练流程
一般需要:
- model.layers,添加层信息;
- model.compile,模型训练的BP模式设置;
- model.fit,模型训练参数设置 + 训练;
- evaluate,模型评估;
- predict 模型预测
1 常用Model属性
model.layers:组成模型图的各个层
model.inputs:模型的输入张量列表
model.outputs:模型的输出张量列表
2 compile 训练模式设置——solver.prototxt
compile(self, optimizer, loss, metrics=None, loss_weights=None, sample_weight_mode=None)
本函数编译模型以供训练,参数有
- optimizer:优化器,为预定义优化器名或优化器对象,参考优化器
- loss:损失函数,为预定义损失函数名或一个目标函数,参考损失函数
- metrics:列表,包含评估模型在训练和测试时的性能的指标,典型用法是metrics=[‘accuracy’]如果要在多输出模型中为不同的输出指定不同的指标,可像该参数传递一个字典,例如metrics={‘ouput_a’: ‘accuracy’}
- sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权)。
- 如果模型有多个输出,可以向该参数传入指定sample_weight_mode的字典或列表。在下面fit函数的解释中有相关的参考内容。
【Tips】如果你只是载入模型并利用其predict,可以不用进行compile。在Keras中,compile主要完成损失函数和优化器的一些配置,是为训练服务的。predict会在内部进行符号函数的编译工作(通过调用_make_predict_function生成函数)
3 fit 模型训练参数设置 + 训练
fit(self, x=None, y=None, batch_size=32, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
本函数用以训练模型,参数有:
- x:输入数据。如果模型只有一个输入,那么x的类型是numpy
- array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy
- array。如果模型的每个输入都有名字,则可以传入一个字典,将输入名与其输入数据对应起来。
- y:标签,numpy array。如果模型有多个输出,可以传入一个numpy
- array的list。如果模型的输出拥有名字,则可以传入一个字典,将输出名与其标签对应起来。
- batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。
- nb_epoch:整数,训练的轮数,训练数据将会被遍历nb_epoch次。Keras中nb开头的变量均为"number of"的意思
- verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
- callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
- validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之后,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。
- validation_data:形式为(X,y)或(X,y,sample_weights)的tuple,是指定的验证集。此参数将覆盖validation_spilt。
- shuffle:布尔值,表示是否在训练过程中每个epoch前随机打乱输入样本的顺序。
- class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)。该参数在处理非平衡的训练数据(某些类的训练样本数很少)时,可以使得损失函数对样本数不足的数据更加关注。
- sample_weight:权值的numpy
- array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=‘temporal’。
- initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。
- 输入数据与规定数据不匹配时会抛出错误
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
4 evaluate,模型评估
evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)
本函数按batch计算在某些输入数据上模型的误差,其参数有:
- x:输入数据,与fit一样,是numpy array或numpy array的list
- y:标签,numpy array
- batch_size:整数,含义同fit的同名参数
- verbose:含义同fit的同名参数,但只能取0或1
- sample_weight:numpy array,含义同fit的同名参数
- 本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。
如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1
5 predict 模型预测
predict(self, x, batch_size=32, verbose=0)
本函数按batch获得输入数据对应的输出,其参数有:
函数的返回值是预测值的numpy array
6 模型检查 on_batch
train_on_batch(self, x, y, class_weight=None, sample_weight=None)
test_on_batch(self, x, y, sample_weight=None)
predict_on_batch(self, x)
- train_on_batch:本函数在一个batch的数据上进行一次参数更新,函数返回训练误差的标量值或标量值的list,与evaluate的情形相同。
- test_on_batch:本函数在一个batch的样本上对模型进行评估,函数的返回与evaluate的情形相同;
- predict_on_batch:本函数在一个batch的样本上对模型进行测试,函数返回模型在一个batch上的预测结果
7 generator
fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_q_size=10, workers=1, pickle_safe=False, initial_epoch=0)
evaluate_generator(self, generator, steps, max_q_size=10, workers=1, pickle_safe=False)