|
AGTC
Description Let x and y be two strings over some finite alphabet A . We would like to transform x into y allowing only operations given below:
Certainly, we would like to minimize the number of all possible operations. IllustrationA G T A A G T * A G G CDeletion: * in the bottom line This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like A G T A A G T A G G C and 4 moves would be required (3 changes and 1 deletion). In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m . Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed. Write a program that would minimize the number of possible operations to transform any string x into a string y . Input The input consists of the strings x and y prefixed by their respective lengths, which are within 1000. Output An integer representing the minimum number of possible operations to transform any string x into a string y . Sample Input 10 AGTCTGACGC Sample Output 4 Source
best[i][j]表示a串的前i个元素变成b串的前j个元素所要经过的最少步骤,开始时先初始化,best[i][0] = i,best[0][j] = j。其中,i和j是从0开始,但是当为1的时候才表示串的第1个元素。另外,比如best[5][0]表示有5个元素的a串变成0个元素的b串要经过的最少步骤,显然,这种时候只有把a中的元素全部删除(删5次),所以best[5][0] = 5。接着开始DP,当a[i] == b[j],则best[i][j] = best[i - 1][j - 1];当不等时,best[i][j] = min(best[i - 1][j - 1],best[i][j - 1],best[i - 1][j]) + 1,min中三个分别表示三种操作:更改,插入,删除。最后提醒一下这题目是多case的,题目本身没说清楚。
|
本文介绍了一种通过动态规划算法来解决字符串转换问题的方法,即如何以最少的操作次数将一个字符串转换成另一个字符串。文章详细解释了算法的具体实现,并通过一个具体的示例展示了算法的应用过程。
981

被折叠的 条评论
为什么被折叠?



