1.Environment
1.1 getExecutionEnvironment
创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val env = StreamExecutionEnvironment.getExecutionEnvironment
如果没有设置并行度,会以flink-conf.yaml中的配置为准,默认是1。
1.2 createLocalEnvironment
返回本地执行环境,需要在调用时指定默认的并行度。
val env = StreamExecutionEnvironment.createLocalEnvironment(1)
1.3 createRemoteEnvironment
返回集群执行环境,将Jar提交到远程服务器。需要在调用时指定JobManager的IP和端口号,并指定要在集群中运行的Jar包。
val env = ExecutionEnvironment.createRemoteEnvironment("jobmanage-hostname", 6123,"YOURPATH//wordcount.jar")
2.Source
2.1 从集合读取数据
package cn.kgc.mystudy
import org.apache.flink.streaming.api.scala._
// 定义样例类,传感器id,时间戳,温度
case class SensorReading(id:String,timestamp:Long,temperature:Double)
object Sensor {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val stream: DataStream[SensorReading] = env.fromCollection(List(
SensorReading("sensor_1", 1547718199, 35.8),
SensorReading("sensor_6", 1547718201, 15.4),
SensorReading("sensor_7", 1547718202, 6.7),
SensorReading("sensor_10", 1547718205, 38.1)
))
stream.print("Stream:").setParallelism(1)
env.execute()
}
}
2.2 从文件读取数据
val stream2 = env.readTextFile("YOUR_FILE_PATH")
2.3 以kafka消息队列的数据作为来源
需要引入kafka连接器的依赖:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>1.7.2</version>
</dependency>
具体代码如下:
val prop = new Properties()
prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.83.100:9092")
prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"flink-kafka-demo")
prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer")
prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer")
prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest")
val stream3 = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), prop))
2.4 自定义Source
除了以上的source数据来源,我们还可以自定义source。需要做的,只是传入一个SourceFunction就可以。具体调用如下:
val stream4 = env.addSource( new MySensorSource() )
我们希望可以随机生成传感器数据,MySensorSource具体的代码实现如下:
class MySensorSource extends SourceFunction[SensorReading]{
//flag:表示数据源是否还在正常运行
var running = true
override def run(sourceContext: SourceFunction.SourceContext[SensorReading]): Unit = {
//初始化一个随机数发生器
val rand=new Random()
var curTemp: immutable.IndexedSeq[(String, Double)] = 1.to(10).map(i=>("sensor_"+i,65+rand.nextGaussian()*20))
while (running){
//更新温度值
curTemp=curTemp.map(t=>(t._1,t._2+rand.nextGaussian()))
//获取当前时间戳
val curTime: Long = System.currentTimeMillis()
curTemp.foreach(t=>sourceContext.collect(SensorReading(t._1,curTime,t._2)))
Thread.sleep(100)
}
}
override def cancel(): Unit = {
running=false
}
}
3.Transform
转换算子
3.1 map
val streamMap = stream.map { x => x * 2 }
3.2 flatMap
flatMap的函数签名:def flatMap[A,B](as: List[A])(f: A ⇒ List[B]): List[B]
例如: flatMap(List(1,2,3))(i ⇒ List(i,i))
结果是List(1,1,2,2,3,3),
而List(“a b”, “c d”).flatMap(line ⇒ line.split(" "))
结果是List(a, b, c, d)。
val streamFlatMap = stream.flatMap{
x => x.split(" ")
}
3.3 Filter
val streamFilter = stream.filter{
x => x == 1
}
3.4 KeyBy
DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。
3.5 滚动聚合算子(Rolling Aggregation)
这些算子可以针对KeyedStream的每一个支流做聚合。
- sum()
- min()
- max()
- minBy()
- maxBy()
3.6 Reduce
KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。
val stream2 = env.readTextFile("YOUR_PATH\\sensor.txt")
.map( data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)
})
.keyBy("id")
.reduce( (x, y) => SensorReading(x.id, x.timestamp + 1, y.temperature) )
3.7 Split 和 Select
Split
DataStream → SplitStream:根据某些特征把一个DataStream拆分成两个或者多个DataStream。
Select
SplitStream→DataStream:从一个SplitStream中获取一个或者多个DataStream。
需求:传感器数据按照温度高低(以30度为界),拆分成两个流。
val splitDS: SplitStream[SensorReading] = stream4.split(sensorData => {
if (sensorData.temperature > 30) {
Seq("high")
} else {
Seq("low")
}
})
splitDS.select("high").print("high")
splitDS.select("low").print("low")
splitDS.print("all")
3.8 Connect和 CoMap
DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。
CoMap,CoFlatMap
ConnectedStreams → DataStream:作用于ConnectedStreams上,功能与map和flatMap一样,对ConnectedStreams中的每一个Stream分别进行map和flatMap处理。
val warning = high.map( sensorData => (sensorData.id, sensorData.temperature) )
val connected = warning.connect(low)
val coMap = connected.map(
warningData => (warningData._1, warningData._2, "warning"),
lowData => (lowData.id, "healthy")
)
3.9 Union
DataStream → DataStream:对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream。
//合并以后打印
val unionStream: DataStream[StartUpLog] = appStoreStream.union(otherStream)
unionStream.print("union:::")
Connect与 Union 区别:
1.Union之前两个流的类型必须是一样,Connect可以不一样,在之后的coMap中再去调整成为一样的。
- Connect只能操作两个流,Union可以操作多个。
4.支持的数据类型
Flink流应用程序处理的是以数据对象表示的事件流。所以在Flink内部,我们需要能够处理这些对象。它们需要被序列化和反序列化,以便通过网络传送它们;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点,Flink需要明确知道应用程序所处理的数据类型。Flink使用类型信息的概念来表示数据类型,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
Flink还具有一个类型提取系统,该系统分析函数的输入和返回类型,以自动获取类型信息,从而获得序列化器和反序列化器。但是,在某些情况下,例如lambda函数或泛型类型,需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。
Flink支持Java和Scala中所有常见数据类型。使用最广泛的类型有以下几种。
4.1 基础数据类型
Flink支持所有的Java和Scala基础数据类型,Int, Double, Long, String, …
val numbers: DataStream[Long] = env.fromElements(1L, 2L, 3L, 4L)
numbers.map( n => n + 1 )
4.2 Java和Scala元组(Tuples)
val persons: DataStream[(String, Integer)] = env.fromElements(
("Adam", 17),
("Sarah", 23) )
persons.filter(p => p._2 > 18)
4.3 Scala样例类(case classes)
case class Person(name: String, age: Int)
val persons: DataStream[Person] = env.fromElements(
Person("Adam", 17),
Person("Sarah", 23) )
persons.filter(p => p.age > 18)
4.4 Java简单对象(POJOs)
public class Person {
public String name;
public int age;
public Person() {}
public Person(String name, int age) {
this.name = name;
this.age = age;
}
}
DataStream<Person> persons = env.fromElements(
new Person("Alex", 42),
new Person("Wendy", 23));
4.5 其它(Arrays, Lists, Maps, Enums, 等等)
Flink对Java和Scala中的一些特殊目的的类型也都是支持的,比如Java的ArrayList,HashMap,Enum等等。
5 实现UDF函数——更细粒度的控制流
5.1 函数类(Function Classes)
Flink暴露了所有udf函数的接口(实现方式为接口或者抽象类)。例如MapFunction, FilterFunction, ProcessFunction等等。
下面例子实现了FilterFunction接口:
class FilterFilter extends FilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains("flink")
}
}
val flinkTweets = tweets.filter(new FlinkFilter)
还可以将函数实现成匿名类
val flinkTweets = tweets.filter(
new RichFilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains("flink")
}
}
)
我们filter的字符串"flink"还可以当作参数传进去。
val tweets: DataStream[String] = ...
val flinkTweets = tweets.filter(new KeywordFilter("flink"))
class KeywordFilter(keyWord: String) extends FilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains(keyWord)
}
}
5.2 匿名函数(Lambda Functions)
val tweets: DataStream[String] = ...
val flinkTweets = tweets.filter(_.contains("flink"))
5.3 富函数(Rich Functions)
“富函数”是DataStream API提供的一个函数类的接口,所有Flink函数类都有其Rich版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。
- RichMapFunction
- RichFlatMapFunction
- RichFilterFunction
- …
Rich Function有一个生命周期的概念。典型的生命周期方法有:
- open()方法是rich function的初始化方法,当一个算子例如map或者filter被调用之前open()会被调用。
- close()方法是生命周期中的最后一个调用的方法,做一些清理工作。
- getRuntimeContext()方法提供了函数的RuntimeContext的一些信息,例如函数执行的并行度,任务的名字,以及state状态
class MyFlatMap extends RichFlatMapFunction[Int, (Int, Int)] {
var subTaskIndex = 0
override def open(configuration: Configuration): Unit = {
subTaskIndex = getRuntimeContext.getIndexOfThisSubtask
// 以下可以做一些初始化工作,例如建立一个和HDFS的连接
}
override def flatMap(in: Int, out: Collector[(Int, Int)]): Unit = {
if (in % 2 == subTaskIndex) {
out.collect((subTaskIndex, in))
}
}
override def close(): Unit = {
// 以下做一些清理工作,例如断开和HDFS的连接。
}
}
6 Sink
Flink没有类似于spark中foreach方法,让用户进行迭代的操作。虽有对外的输出操作都要利用Sink完成。最后通过类似如下方式完成整个任务最终输出操作。
stream.addSink(new MySink(xxxx))
官方提供了一部分的框架的sink。除此以外,需要用户自定义实现sink。
6.1 Kafka
pom.xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>1.7.2</version>
</dependency>
主函数中添加sink:
val union = high.union(low).map(_.temperature.toString)
union.addSink(new FlinkKafkaProducer011[String]("localhost:9092", "test", new SimpleStringSchema()))
6.2 Redis
pom.xml
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.0</version>
</dependency>
定义一个redis的mapper类,用于定义保存到redis时调用的命令:
class MyRedisMapper extends RedisMapper[SensorReading]{
override def getCommandDescription: RedisCommandDescription = {
new RedisCommandDescription(RedisCommand.HSET, "sensor_temperature")
}
override def getValueFromData(t: SensorReading): String = t.temperature.toString
override def getKeyFromData(t: SensorReading): String = t.id
}
在主函数中调用:
val conf = new FlinkJedisPoolConfig.Builder().setHost("localhost").setPort(6379).build()
dataStream.addSink( new RedisSink[SensorReading](conf, new MyRedisMapper) )
6.3 Elasticsearch
pom.xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch6_2.11</artifactId>
<version>1.10.0</version>
</dependency>
在主函数中调用:
val httpHosts = new util.ArrayList[HttpHost]()
httpHosts.add(new HttpHost("localhost", 9200))
val esSinkBuilder = new ElasticsearchSink.Builder[SensorReading]( httpHosts, new ElasticsearchSinkFunction[SensorReading] {
override def process(t: SensorReading, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
println("saving data: " + t)
val json = new util.HashMap[String, String]()
json.put("data", t.toString)
val indexRequest = Requests.indexRequest().index("sensor").`type`("readingData").source(json)
requestIndexer.add(indexRequest)
println("saved successfully")
}
} )
dataStream.addSink( esSinkBuilder.build() )
6.4 JDBC 自定义sink
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.44</version>
</dependency>
添加MyJdbcSink
class MyJdbcSink() extends RichSinkFunction[SensorReading]{
var conn: Connection = _
var insertStmt: PreparedStatement = _
var updateStmt: PreparedStatement = _
// open 主要是创建连接
override def open(parameters: Configuration): Unit = {
super.open(parameters)
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456")
insertStmt = conn.prepareStatement("INSERT INTO temperatures (sensor, temp) VALUES (?, ?)")
updateStmt = conn.prepareStatement("UPDATE temperatures SET temp = ? WHERE sensor = ?")
}
// 调用连接,执行sql
override def invoke(value: SensorReading, context: SinkFunction.Context[_]): Unit = {
updateStmt.setDouble(1, value.temperature)
updateStmt.setString(2, value.id)
updateStmt.execute()
if (updateStmt.getUpdateCount == 0) {
insertStmt.setString(1, value.id)
insertStmt.setDouble(2, value.temperature)
insertStmt.execute()
}
}
override def close(): Unit = {
insertStmt.close()
updateStmt.close()
conn.close()
}
}
在main方法中增加,把明细保存到mysql中
dataStream.addSink(new MyJdbcSink())