#API#
##校验语法##
GET /com/emp/_validate/query?explain
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488006741 15:12:21 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%
green:每个索引的primary shard和replica shard都是active状态的
yellow:每个索引的primary shard都是active状态的,但是部分replica shard不是active状态,处于不可用的状态
red:不是所有索引的primary shard都是active状态的,部分索引有数据丢失了
插入
put /com/emp/7369
{
"ename":"SMITH",
"job": "CLERK",
"mgr":7902,
"sal":800,
"comm":20
}
查询
get /com/emp/7369
修改
post /com/emp/7369/_update
{
"doc":{
"comm":21
}
}
删除
delete /com/emp/7369
##bulk##
耗费更多内存,更多的jvm gc开销
我们之前提到过bulk size最佳大小的那个问题,一般建议说在几千条那样,然后大小在10MB左右,所以说,可怕的事情来了。假设说现在100个bulk请求发送到了一个节点上去,然后每个请求是10MB,100个请求,就是1000MB = 1GB,然后每个请求的json都copy一份为jsonarray对象,此时内存中的占用就会翻倍,就会占用2GB的内存,甚至还不止。因为弄成jsonarray之后,还可能会多搞一些其他的数据结构,2GB+的内存占用。
占用更多的内存可能就会积压其他请求的内存使用量,比如说最重要的搜索请求,分析请求,等等,此时就可能会导致其他请求的性能急速下降
另外的话,占用内存更多,就会导致java虚拟机的垃圾回收次数更多,跟频繁,每次要回收的垃圾对象更多,耗费的时间更多,导致es的java虚拟机停止工作线程的时间更多
(1)不用将其转换为json对象,不会出现内存中的相同数据的拷贝,直接按照换行符切割json
(2)对每两个一组的json,读取meta,进行document路由
(3)直接将对应的json发送到node上去
最大的优势在于,不需要将json数组解析为一个JSONArray对象,形成一份大数据的拷贝,浪费内存空间,尽可能地保证性能
POST /_bulk
{ "delete": { "_index": "test_index", "_type": "test_type", "_id": "3" }}
{ "create": { "_index": "test_index", "_type": "test_type", "_id": "12" }}
{ "test_field": "test12" }
{ "index": { "_index": "test_index", "_type": "test_type", "_id": "2" }}
{ "test_field": "replaced test2" }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": "1", "_retry_on_conflict" : 3} }
{ "doc" : {"test_field2" : "bulk test1"} }
有哪些类型的操作可以执行呢?
(1)delete:删除一个文档,只要1个json串就可以了
(2)create:PUT /index/type/id/_create,强制创建
(3)index:普通的put操作,可以是创建文档,也可以是全量替换文档
(4)update:执行的partial update操作
bulk api对json的语法,有严格的要求,每个json串不能换行,只能放一行,同时一个json串和一个json串之间,必须有一个换行
bulk操作中,任意一个操作失败,是不会影响其他的操作的,但是在返回结果里,会告诉你异常日志
POST /test_index/_bulk
{ "delete": { "_type": "test_type", "_id": "3" }}
{ "create": { "_type": "test_type", "_id": "12" }}
{ "test_field": "test12" }
{ "index": { "_type": "test_type" }}
{ "test_field": "auto-generate id test" }
{ "index": { "_type": "test_type", "_id": "2" }}
{ "test_field": "replaced test2" }
{ "update": { "_type": "test_type", "_id": "1", "_retry_on_conflict" : 3} }
{ "doc" : {"test_field2" : "bulk test1"} }
POST /test_index/test_type/_bulk
{ "delete": { "_id": "3" }}
{ "create": { "_id": "12" }}
{ "test_field": "test12" }
{ "index": { }}
{ "test_field": "auto-generate id test" }
{ "index": { "_id": "2" }}
{ "test_field": "replaced test2" }
{ "update": { "_id": "1", "_retry_on_conflict" : 3} }
{ "doc" : {"test_field2" : "bulk test1"} }
bulk size最佳大小
bulk request会加载到内存里
如果太大的话,性能反而会下降,因此需要反复尝试一个最佳的bulk size。一般从1000~5000条数据开始,尝试逐渐增加。
另外,如果看大小的话,最好是在5~15MB之间。
#查询#
###查询结果说明###
GET /com/emp/_search
took:耗费了几毫秒
timed_out:是否超时,这里是没有
_shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以)
hits.total:查询结果的数量,3个document
hits.max_score:score的含义,就是document对于一个search的相关度的匹配分数,越相关,就越匹配,分数也高
hits.hits:包含了匹配搜索的document的详细数据
took:整个搜索请求花费了多少毫秒
hits.total:本次搜索,返回了几条结果
hits.max_score:本次搜索的所有结果中,最大的相关度分数是多少,每一条document对于search的相关度,越相关,_score分数越大,排位越靠前
hits.hits:默认查询前10条数据,完整数据,_score降序排序
shards:shards fail的条件(primary和replica全部挂掉),不影响其他shard。默认情况下来说,一个搜索请求,会打到一个index的所有primary shard上去,当然了,每个primary shard都可能会有一个或多个replic shard,所以请求也可以到primary shard的其中一个replica shard上去。
timeout:默认无timeout,latency平衡completeness,手动指定timeout,timeout查询执行机制
timeout=10ms,timeout=1s,timeout=1m
GET /_search?timeout=10m
###query string###
GET /test_index/test_type/_search?q=test_field:test
GET /test_index/test_type/_search?q=+test_field:test
GET /test_index/test_type/_search?q=-test_field:test
一个是掌握q=field:search content的语法,还有一个是掌握+和-的含义
定制返回的结果,指定_source中,返回哪些field
GET /test_index/test_type/1?_source=test_field1,test_field2
###DSL###
GET /test_index/test_type/_search
{
"query": {
"match": {
"test_field": "test"
}
}
}
GET /test_index/_search
{
"query": {
"bool": {
"must": { "match": { "name": "tom" }},
"should": [
{ "match": { "hired": true }},
{ "bool": {
"must": { "match": { "personality": "good" }},
"must_not": { "match": { "rude": true }}
}}
],
"minimum_should_match": 1
}
}
}
###match all###
GET /_search
{
"query": {
"match_all": {}
}
}
###match###
GET /_search
{
"query": { "match": { "title": "my elasticsearch article" }}
}
###multi match###
GET /test_index/test_type/_search
{
"query": {
"multi_match": {
"query": "test",
"fields": ["test_field", "test_field1"]
}
}
}
###range query###
GET /company/employee/_search
{
"query": {
"range": {
"age": {
"gte": 30
}
}
}
}
###term query###
GET /test_index/test_type/_search
{
"query": {
"term": {
"test_field": "test hello"
}
}
}
###terms query###
GET /_search
{
"query": { "terms": { "tag": [ "search", "full_text", "nosql" ] }}
}
###phrase search(短语搜索)###
跟全文检索相对应,相反,全文检索会将输入的搜索串拆解开来,去倒排索引里面去一一匹配,只要能匹配上任意一个拆解后的单词,就可以作为结果返回
phrase search,要求输入的搜索串,必须在指定的字段文本中,完全包含一模一样的,才可以算匹配,才能作为结果返回
GET /ecommerce/product/_search
{
"query" : {
"match_phrase" : {
"producer" : "yagao producer"
}
}
}
###复杂查询###
{
"bool": {
"must": { "match": { "title": "how to make millions" }},
"must_not": { "match": { "tag": "spam" }},
"should": [
{ "match": { "tag": "starred" }}
],
"filter": {
"bool": {
"must": [
{ "range": { "date": { "gte": "2014-01-01" }}},
{ "range": { "price": { "lte": 29.99 }}}
],
"must_not": [
{ "term": { "category": "ebooks" }}
]
}
}
}
}
###批量查询###
/_search:所有索引,所有type下的所有数据都搜索出来
/index1/_search:指定一个index,搜索其下所有type的数据
/index1,index2/_search:同时搜索两个index下的数据
/*1,*2/_search:按照通配符去匹配多个索引
/index1/type1/_search:搜索一个index下指定的type的数据
/index1/type1,type2/_search:可以搜索一个index下多个type的数据
/index1,index2/type1,type2/_search:搜索多个index下的多个type的数据
/_all/type1,type2/_search:_all,可以代表搜索所有index下的指定type的数据
不同index不同type
GET /_mget
{
"docs" : [
{
"_index" : "test_index",
"_type" : "test_type",
"_id" : 1
},
{
"_index" : "test_index",
"_type" : "test_type",
"_id" : 2
}
]
}
index下的不同type
GET /test_index/_mget
{
"docs" : [
{
"_type" : "test_type",
"_id" : 1
},
{
"_type" : "test_type",
"_id" : 2
}
]
}
在同一个index下的同一个type下,最简单了
GET /test_index/test_type/_mget
{
"ids": [1, 2]
}
###聚合查询###
PUT /com/_mapping/emp
{
"properties": {
"tags": {
"type": "text",
"fielddata": true
}, "job": {
"type": "text",
"fielddata": true
}
}
}
GET /com/emp/_search
{
"size":0,
"query":{
"match":{
"tags":"a"
}
},
"aggs":{
"g1":{
"terms":{"field":"job"}
}
}
}
##聚合##
###统计###
GET /tvs/sales/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": { "avg": { "field": "price" } },
"min_price" : { "min": { "field": "price"} },
"max_price" : { "max": { "field": "price"} },
"sum_price" : { "sum": { "field": "price" } }
}
}
}
}
"buckets": [
{
"key": "红色",
"doc_count": 4,
"max_price": {
"value": 8000
},
"min_price": {
"value": 1000
},
"avg_price": {
"value": 3250
},
"sum_price": {
"value": 13000
}
},
{
"key": "绿色",
"doc_count": 2,
"max_price": {
"value": 3000
},
"min_price": {
"value":
}, 1200
"avg_price": {
"value": 2100
},
"sum_price": {
"value": 4200
}
},
{
"key": "蓝色",
"doc_count": 2,
"max_price": {
"value": 2500
},
"min_price": {
"value": 1500
},
"avg_price": {
"value": 2000
},
"sum_price": {
"value": 4000
}
}
query###
GET /tvs/sales/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
}
}
}
}
###extended_bounds###
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_sold_date": {
"date_histogram": {
"field": "sold_date",
"interval": "quarter",
"format": "yyyy-MM-dd",
"min_doc_count": 0,
"extended_bounds": {
"min": "2016-01-01",
"max": "2017-12-31"
}
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"sum_price": {
"sum": {
"field": "price"
}
}
}
},
"total_sum_price": {
"sum": {
"field": "price"
}
}
}
}
}
}
###global bucket###
GET /tvs/sales/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "长虹"
}
}
},
"aggs": {
"single_brand_avg_price": {
"avg": {
"field": "price"
}
},
"all": {
"global": {},
"aggs": {
"all_brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
global:就是global bucket,就是将所有数据纳入聚合的scope,而不管之前的query
{
"aggregations": {
"all": {
"doc_count": 8,
"all_brand_avg_price": {
"value": 2650
}
},
"single_brand_avg_price": {
"value": 1666.6666666666667
}
}
}
single_brand_avg_price:
就是针对query搜索结果,执行的,拿到的,就是长虹品牌的平均价格
all.all_brand_avg_price:
拿到所有品牌的平均价格
filter过滤###
GET /tvs/sales/_search
{
"size": 0,
"query": {
"constant_score": {
"filter": {
"range": {
"price": {
"gte": 1200
}
}
}
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
###局部filter###
GET /tvs/sales/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "长虹"
}
}
},
"aggs": {
"recent_150d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-150d"
}
}
},
"aggs": {
"recent_150d_avg_price": {
"avg": {
"field": "price"
}
}
}
},
"recent_140d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-140d"
}
}
},
"aggs": {
"recent_140d_avg_price": {
"avg": {
"field": "price"
}
}
}
},
"recent_130d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-130d"
}
}
},
"aggs": {
"recent_130d_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
aggs.filter,针对的是聚合去做的
如果放query里面的filter,是全局的,会对所有的数据都有影响
但是,如果,比如说,你要统计,长虹电视,最近1个月的平均值; 最近3个月的平均值; 最近6个月的平均值
bucket filter:对不同的bucket下的aggs,进行filter
###filter内排序###
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color",
"order": {
"avg_price": "asc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
//最深层排序
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand",
"order": {
"avg_price": "desc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
###多层聚合###
GET /com/emp/_search
{
"size":0,
"aggs":{
"g1":{
"terms":{"field":"job"},
"aggs":{
"avg_sal":{
"avg":{"field":"sal"}
}
}
}
}
}
###多层2###
GET /com/emp/_search
{
"size":0,
"aggs":{
"price_g":{
"range":{
"field":"sal",
"ranges":[
{ "from":0, "to":1000 },
{ "from":1000, "to":2000 },
{ "from":2000, "to":3000 },
{ "from":3000, "to":4000 }
]
},
"aggs":{
"g1":{
"terms":{"field":"job"},
"aggs":{
"avg_sal":{
"avg":{"field":"sal"}
}
}
}
}
}
}
}
##tophits综合应用##
GET /xxx-2017.11.29/xxx/_search
{
"size":0,
"query": {
"bool": {
"filter": {
"term": {
"metricset.name": "process"
}
}
}
},
"aggs": {
"pp":{
"terms": {
"field": "system.process.pid"
},
"aggs":{
"uu":{
"terms":{
"field": "system.process.username"
},
"aggs": {
"top_t": {
"top_hits": {
"sort": [{
"@timestamp": {
"order": "desc"
}
}],
"_source": {
"include": [
"system.process.cpu.total.pct",
"system.process.memory.rss.pct",
"system.process.fd.open",
"system.process.pid",
"system.process.username",
"system.process.state",
"system.process.name"
]
},
"size": 1
}
}
}
}
}
}
}
}
##docvalue##
GET /xxx-*/metrics/_search
{
"size":0,
"query":{
"bool": {
"must": [{
"terms": {
"beat.host": ["3a23448b-74b8-4f7a-8453-77c2f8a1e9f8"]
}
},
{
"term": {
"metricset.moduler": "server"
}
},
{
"terms": {
"metricset.name": ["cpu", "mem", "disk"]
}
},{"range":{
"@timestamp": {
"gte": 1512452490000,
"lte": 1512864010000
}}
}]
}
},
"aggs": {
"server": {
"terms": {
"field": "beat.host"
},"aggs":{
"type": {
"terms": {
"field": "metricset.name"
},
"aggs": {
"top_t": {
"top_hits": {
"size": 1,
"sort": {
"@timestamp": {
"order": "desc"
}
},"docvalue_fields": [ "server.cpu.total", "server.mem.usagerate","server.disk.usagerate"]
}
}
}
}
}
}
}
}
##minimum_should_match##
{
"match": {
"title": {
"query": "java elasticsearch hadoop spark",
"minimum_should_match": "75%"
}
}
}
转换为
{
"bool": {
"should": [
{ "term": { "title": "java" }},
{ "term": { "title": "elasticsearch" }},
{ "term": { "title": "hadoop" }},
{ "term": { "title": "spark" }}
],
"minimum_should_match": 3
}
}
##filter##
(1)term filter:根据exact value进行搜索,数字、boolean、date天然支持
(2)text需要建索引时指定为not_analyzed,才能用term query
(3)相当于SQL中的单个where条件
搜索请求:年龄必须大于等于30,同时join_date必须是2016-01-01
GET /company/employee/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"join_date": "2016-01-01"
}
}
],
"filter": {
"range": {
"age": {
"gte": 30
}
}
}
}
}
}
GET /forum/article/_search
{
"query" : {
"constant_score" : {
"filter" : {
"term" : {
"articleID" : "XHDK-A-1293-#fJ3"
}
}
}
}
2、filter与query对比大解密
filter,仅仅只是按照搜索条件过滤出需要的数据而已,不计算任何相关度分数,对相关度没有任何影响
query,会去计算每个document相对于搜索条件的相关度,并按照相关度进行排序
一般来说,如果你是在进行搜索,需要将最匹配搜索条件的数据先返回,那么用query;如果你只是要根据一些条件筛选出一部分数据,不关注其排序,那么用filter
除非是你的这些搜索条件,你希望越符合这些搜索条件的document越排在前面返回,那么这些搜索条件要放在query中;如果你不希望一些搜索条件来影响你的document排序,那么就放在filter中即可
3、filter与query性能
filter,不需要计算相关度分数,不需要按照相关度分数进行排序,同时还有内置的自动cache最常使用filter的数据
query,相反,要计算相关度分数,按照分数进行排序,而且无法cache结果
###filter缓存###
(1)在倒排索引中查找搜索串,获取document list
date来举例
word doc1 doc2 doc3
2017-01-01 * *
2017-02-02 * *
2017-03-03 * * *
filter:2017-02-02
到倒排索引中一找,发现2017-02-02对应的document list是doc2,doc3
(2)为每个在倒排索引中搜索到的结果,构建一个bitset,[0, 0, 0, 1, 0, 1]
非常重要
使用找到的doc list,构建一个bitset,就是一个二进制的数组,数组每个元素都是0或1,用来标识一个doc对一个filter条件是否匹配,如果匹配就是1,不匹配就是0
[0, 1, 1]
doc1:不匹配这个filter的
doc2和do3:是匹配这个filter的
尽可能用简单的数据结构去实现复杂的功能,可以节省内存空间,提升性能
(3)遍历每个过滤条件对应的bitset,优先从最稀疏的开始搜索,查找满足所有条件的document
后面会讲解,一次性其实可以在一个search请求中,发出多个filter条件,每个filter条件都会对应一个bitset
遍历每个filter条件对应的bitset,先从最稀疏的开始遍历
[0, 0, 0, 1, 0, 0]:比较稀疏
[0, 1, 0, 1, 0, 1]
先遍历比较稀疏的bitset,就可以先过滤掉尽可能多的数据
遍历所有的bitset,找到匹配所有filter条件的doc
请求:filter,postDate=2017-01-01,userID=1
postDate: [0, 0, 1, 1, 0, 0]
userID: [0, 1, 0, 1, 0, 1]
遍历完两个bitset之后,找到的匹配所有条件的doc,就是doc4
就可以将document作为结果返回给client了
(4)caching bitset,跟踪query,在最近256个query中超过一定次数的过滤条件,缓存其bitset。对于小segment(<1000,或<3%),不缓存bitset。
比如postDate=2017-01-01,[0, 0, 1, 1, 0, 0],可以缓存在内存中,这样下次如果再有这个条件过来的时候,就不用重新扫描倒排索引,反复生成bitset,可以大幅度提升性能。
在最近的256个filter中,有某个filter超过了一定的次数,次数不固定,就会自动缓存这个filter对应的bitset
segment(上半季),filter针对小segment获取到的结果,可以不缓存,segment记录数<1000,或者segment大小<index总大小的3%
segment数据量很小,此时哪怕是扫描也很快;segment会在后台自动合并,小segment很快就会跟其他小segment合并成大segment,此时就缓存也没有什么意义,segment很快就消失了
针对一个小segment的bitset,[0, 0, 1, 0]
filter比query的好处就在于会caching,但是之前不知道caching的是什么东西,实际上并不是一个filter返回的完整的doc list数据结果。而是filter bitset缓存起来。下次不用扫描倒排索引了。
(5)filter大部分情况下来说,在query之前执行,先尽量过滤掉尽可能多的数据
query:是会计算doc对搜索条件的relevance score,还会根据这个score去排序
filter:只是简单过滤出想要的数据,不计算relevance score,也不排序
(6)如果document有新增或修改,那么cached bitset会被自动更新
postDate=2017-01-01,[0, 0, 1, 0]
document,id=5,postDate=2017-01-01,会自动更新到postDate=2017-01-01这个filter的bitset中,全自动,缓存会自动更新。postDate=2017-01-01的bitset,[0, 0, 1, 0, 1]
document,id=1,postDate=2016-12-30,修改为postDate-2017-01-01,此时也会自动更新bitset,[1, 0, 1, 0, 1]
(7)以后只要是有相同的filter条件的,会直接来使用这个过滤条件对应的cached bitset
###复杂filter查询###
GET /forum/article/_search
{
"query": {
"constant_score": {
"filter": {
"bool": {
"should": [
{
"term": {
"articleID": "XHDK-A-1293-#fJ3"
}
},
{
"bool": {
"must": [
{
"term":{
"articleID": "JODL-X-1937-#pV7"
}
},
{
"term": {
"postDate": "2017-01-01"
}
}
]
}
}
]
}
}
}
}
}
##定制排序##
默认情况下,是按照_score降序排序的
然而,某些情况下,可能没有有用的_score,比如说filter
GET /com/emp/_search
{
"query":{
"constant_score": {
"filter": {
"range": {
"sal": {
"gte": 1500
}
}
},
"boost": 1.2
}
},
"sort": [
{
"sal": {
"order": "desc"
}
}
]
}
###高亮###
GET /ecommerce/product/_search
{
"query" : {
"match" : {
"producer" : "producer"
}
},
"highlight": {
"fields" : {
"producer" : {}
}
}
}
#案例#
##修改field重导入数据##
1、重建索引
一个field的设置是不能被修改的,如果要修改一个Field,那么应该重新按照新的mapping,建立一个index,然后将数据批量查询出来,
重新用bulk api写入index中
批量查询的时候,建议采用scroll api,并且采用多线程并发的方式来reindex数据,每次scoll就查询指定日期的一段数据,交给一个线程即可
(1)一开始,依靠dynamic mapping,插入数据,但是不小心有些数据是2017-01-01这种日期格式的,
所以title这种field被自动映射为了date类型,实际上它应该是string类型的
PUT /my_index/my_type/3
{
"title": "2017-01-03"
}
{
"my_index": {
"mappings": {
"my_type": {
"properties": {
"title": {
"type": "date"
}
}
}
}
}
}
(2)当后期向索引中加入string类型的title值的时候,就会报错
PUT /my_index/my_type/4
{
"title": "my first article"
}
(3)如果此时想修改title的类型,是不可能的
PUT /my_index/_mapping/my_type
{
"properties": {
"title": {
"type": "text"
}
}
}
(4)此时,唯一的办法,就是进行reindex,也就是说,重新建立一个索引,将旧索引的数据查询出来,再导入新索引
(5)如果说旧索引的名字,是old_index,新索引的名字是new_index,终端java应用,已经在使用old_index在操作了,难道还要去停止java应用,修改使用的index为new_index,才重新启动java应用吗?这个过程中,就会导致java应用停机,可用性降低
(6)所以说,给java应用一个别名,这个别名是指向旧索引的,java应用先用着,java应用先用goods_index alias来操作,此时实际指向的是旧的my_index
PUT /my_index/_alias/goods_index
(7)新建一个index,调整其title的类型为string
PUT /my_index_new
{
"mappings": {
"my_type": {
"properties": {
"title": {
"type": "text"
}
}
}
}
}
(8)使用scroll api将数据批量查询出来
GET /my_index/_search?scroll=1m
{
"query": {
"match_all": {}
},
"sort": ["_doc"],
"size": 1
}
{
"_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAADpAFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAA6QRY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAAOkIWNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAADpDFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAA6RBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3",
"took": 1,
(9)采用bulk api将scoll查出来的一批数据,批量写入新索引
POST /_bulk
{ "index": { "_index": "my_index_new", "_type": "my_type", "_id": "2" }}
{ "title": "2017-01-02" }
(10)反复循环8~9,查询一批又一批的数据出来,采取bulk api将每一批数据批量写入新索引
(11)将goods_index alias切换到my_index_new上去,java应用会直接通过index别名使用新的索引中的数据,java应用程序不需要停机,零提交,高可用
POST /_aliases
{
"actions": [
{ "remove": { "index": "my_index", "alias": "goods_index" }},
{ "add": { "index": "my_index_new", "alias": "goods_index" }}
]
}
(12)直接通过goods_index别名来查询,是否ok
GET /goods_index/my_type/_search
2、基于alias对client透明切换index
PUT /my_index_v1/_alias/my_index
client对my_index进行操作
reindex操作,完成之后,切换v1到v2
POST /_aliases
{
"actions": [
{ "remove": { "index": "my_index_v1", "alias": "my_index" }},
{ "add": { "index": "my_index_v2", "alias": "my_index" }}
]
}
#数据#
PUT /emp
{
"mappings": {
"properties": {
"empno": {
"type": "integer"
},
"ename": {
"type": "text"
},
"job": {
"type": "text"
},
"mgr": {
"type": "integer"
},
"hiredate": {
"type": "date",
"format": "yyyy-MM-dd"
},
"sal": {
"type": "integer"
},
"comm": {
"type": "integer"
},
"tags": {
"type": "text"
},
"deptno": {
"type": "integer"
}
}
}
}
put /com/emp/7499
{
"empno": 7499,
"ename": "ALLEN",
"job": "SALESMAN",
"mgr": 7698,
"hiredate": "1981-02-20",
"sal": 1600,
"comm": 300,
"tags":["a"],
"deptno": 30
}
put /com/emp/7521
{
"empno": 7521,
"ename": "WARD",
"job": "SALESMAN",
"mgr": 7698,
"hiredate": "1981-02-22",
"sal": 1250,
"tags":["a"],
"comm": 500,
"deptno": 30
}
put /com/emp/7566
{
"empno": 7566,
"ename": "JONES",
"job": "MANAGER",
"mgr": 7839,
"hiredate": "1981-04-02",
"sal": 2975,
"tags":["b"],
"deptno": 20
}
put /com/emp/7654
{
"empno": 7654,
"ename": "MARTIN",
"job": "SALESMAN",
"mgr": 7698,
"hiredate": "1981-09-28",
"sal": 1250,
"comm": 1400,
"tags":["b"],
"deptno": 30
}
put /com/emp/7698
{
"empno": 7698,
"ename": "BLAKE",
"job": "MANAGER",
"mgr": 7839,
"hiredate": "1981-01-01",
"sal": 2850,
"tags":["c"],
"deptno": 30
}
put /com/emp/7782
{
"empno": 7782,
"ename": "CLARK",
"job": "MANAGER",
"mgr": 7839,
"hiredate": "1981-06-09",
"tags":["c"],
"sal": 2450,
"deptno": 10
}
put /com/emp/7788
{
"empno": 7788,
"ename": "SCOTT",
"job": "ANALYST",
"mgr": 7566,
"hiredate": "1987-04-19",
"sal": 3000,
"tags":["a","b"],
"deptno": 20
}
put /com/emp/7839
{
"empno": 7839,
"ename": "KING",
"job": "PRESIDENT",
"hiredate": "1981-11-17",
"sal": 5000,
"tags":["a","c"],
"deptno": 10
}
put /com/emp/7844
{
"empno": 7844,
"ename": "TURNER",
"job": "SALESMAN",
"mgr": 7698,
"hiredate": "1981-09-08",
"sal": 1500,
"comm": 0,
"tags":["b","c"],
"deptno": 30
}
put /com/emp/7876
{
"empno": 7876,
"ename": "ADAMS",
"job": "CLERK",
"mgr": 7788,
"hiredate": "1987-05-23",
"sal": 1100,
"tags":["a","b"],
"deptno": 20
}
put /com/emp/7900
{
"empno": 7900,
"ename": "JAMES",
"job": "CLERK",
"mgr": 7698,
"hiredate": "1981-12-03",
"sal": 950,
"tags":["a","b"],
"deptno": 30
}
put /com/emp/7902
{
"empno": 7902,
"ename": "FORD",
"job": "ANALYST",
"mgr": 7566,
"hiredate": "1981-12-03",
"sal": 3000,
"tags":["a","b","d"],
"deptno": 20
}
put /com/emp/7934
{
"empno": 7934,
"ename": "MILLER",
"job": "CLERK",
"mgr": 7782,
"hiredate": "1982-01-23",
"sal": 1300,
"tags":["a","b","e"],
"deptno": 10
}
1065

被折叠的 条评论
为什么被折叠?



