No. 02 - Stack with Function min()

No. 02 - Stack with Function min()

Problem: Define a stack, in which we can get its minimum number with a function min. In this stack, the time complexity of min(), push() and pop() are all O(1).

Analysis: Our intuition for this problem might be that we sort all of numbers in the stack when we push a new one, and keep the minimum number on the top of stack. In this way we can get the minimum number in O(1) time. However, we cannot assure that the last number pushed in to container will be the first one to be popped out, so it is no longer a stack.

We may add a new member variable in a stack to keep the minimum number. When we push a new number which is less than the minimum number, we will update it. It sounds good. However, how to get the next minimum number when the current minimum one is popped? Fortunately, we have two solutions for this problem.

Solution 1: With Auxiliary Stack

It is not enough to have only a member variable to keep the minimum number. When the minimum one is popped, we need to get the next minimum one. Therefore, we need to store the next minimum number before push the current minimum one.

How about to store each minimum number (the less value of current minimum number and the number to be pushed) into an auxiliary stack? We may analyze the process to push and pop numbers via some examples (Table 1).

Step
Operation
Data Stack
Auxiliary Stack
Minimum
1
Push 3
3
3
3
2
Push 4
3, 4
3, 3
3
3
Push 2
3, 4, 2
3, 3, 2
2
4
Push 1
3, 4, 2, 1
3, 3, 2, 1
1
5
Pop
3, 4, 2
3, 3, 2
2
6
Pop
3, 4
3, 3
3
7
Push 0
3, 4, 0
3, 3, 0
0
Table 1: The status of data stack, auxiliary stack, minimum value when we push 3, 4, 2, 1, pop twice, and then push 0

At first we push 3 into both data stack and auxiliary stack. Secondly we push 4 into the data stack. We push 3 again into the auxiliary stack because 4 is greater than 3. Thirdly, we continue pushing 2 into the data stack. We update the minimum number as 2 and push it into the auxiliary stack since 2 is less the previous minimum number 3. It is same in the fourth step when we push 1. We also need to update the minimum number and push 1 into the auxiliary stack. We can notice that the top of auxiliary stack is always the minimum number if we push the minimum number into auxiliary stack in each step. 

Whenever we pop a number from data stack, we also pop a number from auxiliary stack. If the minimum number is popped, the next minimum number should be also on the top of auxiliary stack. In the fifth step we pop 1 from the data stack, and we also pop the number on the top of auxiliary (which is 1). We can see that the next minimum number 2 is now on the top of auxiliary stack. If we continue popping from both the data and auxiliary stacks, there are only two numbers 3 and 4 left in the data stack. The minimum number 3 is indeed on the top of the auxiliary stack. Therefore, it demonstrates that our solution is correct.

Now we can develop the required stack. The stack is declared as the following:

template < typename T>  class StackWithMin
{
public:
    StackWithMin( void) {}
     virtual ~StackWithMin( void) {}

    T& top( void);

     void push( const T& value);
     void pop( void);

     const T& min( voidconst;

private:
    std::stack<T>   m_data;      // data stack, to store numbers
    std::stack<T>   m_min;       // auxiliary stack, to store minimum numbers
};

The function push, pop and min and top can be implemented as:

template < typename T>  void StackWithMin<T>::push( const T& value)
{
     // push the new number into data stack
    m_data.push(value);

    // push the new number into auxiliary stack
    // if it is less than the previous minimum number,
    // otherwise push a replication of the minimum number
     if(m_min.size() == 0 || value < m_min.top())
        m_min.push(value);
     else
        m_min.push(m_min.top());
}

template < typename T>  void StackWithMin<T>::pop()
{
    assert(m_data.size() > 0 && m_min.size() > 0);

    m_data.pop();
    m_min.pop();
}

template < typename T>  const T& StackWithMin<T>::min()  const
{
    assert(m_data.size() > 0 && m_min.size() > 0);

     return m_min.top();
}

template < typename T> T& StackWithMin<T>::top()
{
     return m_data.top();
}

The length of auxiliary stack should be  n if we push  n numbers into data stack. Therefore, we need O( n) auxiliary memory for this solution.

Solution 2: Without Auxiliary Stack(the solution 2 is so great!!)

The second solution is trickier without an auxiliary stack. We do not always push numbers into data stack directly, but we have some tricky calculation before pushing.

Supposing that we are going to push a number  value into a stack with minimum number  min. If value is greater than or equal to the  min, it is pushed directly into data stack. If it is less than  min, we push 2* value - min, and update  min as  value since a new minimum number is pushed. How about to pop? We pop it directly if the top of data stack (it is denoted as  top) is greater than or equal to  min. Otherwise the number  top is not the real pushed number. The real pushed number is stored is  min. After the current minimum number is popped, we need to restore the previous minimum number, which is 2* min- top.

Now let us demonstrate its correctness of this solution. Since  value is greater than or equal to min, it is pushed into data stack direct without updating  min. Therefore, when we find that the top of data stack is greater than or equal to  min, we can pop directly without updating  min. However, if we find  value is less then  min, we push 2* value- min. We should notice that 2* value- min should be less than  value. Then we update current  min as  value. Therefore, the new top of data stack ( top) is less than the current  min. Therefore, when we find that the top of data stack is less then  min, the real top (real pushed number  value) is stored in  min. After we pop the top of data stack, we have to restore the previous minimum number. Since  top = 2* value-previous  min and  value is current  min, pervious  min is 2*current  min -  top.  

It sounds great. We feel confident to write code now with the correctness demonstration. The following is the sample code:

template < typename T>  class StackWithMin
{
public:
    StackWithMin( void) {}
     virtual ~StackWithMin( void) {}

    T& top( void);

     void push( const T& value);
     void pop( void);

     const T& min( voidconst;

private:
    std::stack<T>   m_data;      // data stack, to store numbers
    T               m_min;       // minimum number
};

template < typename T>  void StackWithMin<T>::push( const T& value)
{
     if(m_data.size() == 0)
    {
        m_data.push(value);
        m_min = value;
    }
     else  if(value >= m_min)
    {
        m_data.push(value);
    }
     else
    {
        m_data.push(2 * value - m_min);
        m_min = value;
    }
}

template < typename T>  void StackWithMin<T>::pop()
{
    assert(m_data.size() > 0);

     if(m_data.top() < m_min)
        m_min = 2 * m_min - m_data.top();

    m_data.pop();
}

template < typename T>  const T& StackWithMin<T>::min()  const
{
    assert(m_data.size() > 0);

     return m_min;
}

template < typename T> T& StackWithMin<T>::top()
{
    T top = m_data.top();
     if(top < m_min)
        top = m_min;

     return top;
}

In this solution, we don’t need the O( n) auxiliary stack, so it is more efficient in the perspective of memory utilization than the first solution above. 

The author Harry He owns all the rights of this post. If you are going to use part of or the whole of this ariticle in your blog or webpages,  please add a reference to  http://codercareer.blogspot.com/. If you are going to use it in your books, please contact me (zhedahht@gmail.com) . Thanks. 

# ComfyUI Error Report ## Error Details - **Node ID:** 90 - **Node Type:** WanVideoSampler - **Exception Type:** UnboundLocalError - **Exception Message:** cannot access local variable 'callback_latent' where it is not associated with a value ## Stack Trace ``` File "G:\comfyui\ComfyUI\execution.py", line 496, in execute output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\comfyui\ComfyUI\execution.py", line 315, in get_output_data return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\comfyui\ComfyUI\execution.py", line 289, in _async_map_node_over_list await process_inputs(input_dict, i) File "G:\comfyui\ComfyUI\execution.py", line 277, in process_inputs result = f(**inputs) ^^^^^^^^^^^ File "G:\comfyui\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 3988, in process "samples": callback_latent.unsqueeze(0).cpu() if callback is not None else None, ^^^^^^^^^^^^^^^ ``` ## System Information - **ComfyUI Version:** 0.3.56 - **Arguments:** main.py --auto-launch - **OS:** nt - **Python Version:** 3.12.10 (tags/v3.12.10:0cc8128, Apr 8 2025, 12:21:36) [MSC v.1943 64 bit (AMD64)] - **Embedded Python:** false - **PyTorch Version:** 2.7.1+cu128 ## Devices - **Name:** cuda:0 NVIDIA GeForce RTX 4070 Ti SUPER : cudaMallocAsync - **Type:** cuda - **VRAM Total:** 17170956288 - **VRAM Free:** 15821963264 - **Torch VRAM Total:** 0 - **Torch VRAM Free:** 0 ## Logs ``` 2025-09-01T14:58:56.860057 - 0.9 seconds: G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes 2025-09-01T14:58:56.860057 - 1.1 seconds: G:\comfyui\ComfyUI\custom_nodes\ComfyUI_Custom_Nodes_AlekPet 2025-09-01T14:58:56.861054 - 1.7 seconds: G:\comfyui\ComfyUI\custom_nodes\ComfyUI-nunchaku 2025-09-01T14:58:56.861054 - 2.4 seconds: G:\comfyui\ComfyUI\custom_nodes\ComfyUI-Easy-Use 2025-09-01T14:58:56.861054 - 2025-09-01T14:58:57.088527 - Context impl SQLiteImpl. 2025-09-01T14:58:57.088527 - Will assume non-transactional DDL. 2025-09-01T14:58:57.089524 - No target revision found. 2025-09-01T14:58:57.111451 - Starting server 2025-09-01T14:58:57.112447 - To see the GUI go to: http://127.0.0.1:8188 2025-09-01T14:58:58.110145 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/photoswipe-lightbox.esm.min.js2025-09-01T14:58:58.110145 - 2025-09-01T14:58:58.154639 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/photoswipe.min.css2025-09-01T14:58:58.154639 - 2025-09-01T14:58:58.155636 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/pickr.min.js2025-09-01T14:58:58.155636 - 2025-09-01T14:58:58.192513 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/classic.min.css2025-09-01T14:58:58.192513 - 2025-09-01T14:58:58.193509 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/model-viewer.min.js2025-09-01T14:58:58.193509 - 2025-09-01T14:58:58.197497 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/juxtapose.css2025-09-01T14:58:58.198493 - 2025-09-01T14:58:58.209456 - G:\comfyui\ComfyUI\custom_nodes\comfyui-mixlab-nodes\webApp\lib/juxtapose.min.js2025-09-01T14:58:58.209456 - 2025-09-01T14:58:58.799579 - [G:\comfyui\ComfyUI\custom_nodes\comfy_mtb] | INFO -> Found multiple match, we will pick the last D:\AI-sd\sd-webui-aki-v4\models\SwinIR ['G:\\comfyui\\ComfyUI\\models\\upscale_models', 'D:\\AI-sd\\sd-webui-aki-v4\\models\\ESRGAN', 'D:\\AI-sd\\sd-webui-aki-v4\\models\\RealESRGAN', 'D:\\AI-sd\\sd-webui-aki-v4\\models\\SwinIR'] 2025-09-01T14:58:58.807556 - []2025-09-01T14:58:58.807556 - 2025-09-01T14:58:58.807556 - []2025-09-01T14:58:58.807556 - 2025-09-01T14:59:00.532965 - got prompt 2025-09-01T14:59:00.569842 - Using xformers attention in VAE 2025-09-01T14:59:00.570844 - Using xformers attention in VAE 2025-09-01T14:59:00.726582 - VAE load device: cuda:0, offload device: cpu, dtype: torch.bfloat16 2025-09-01T14:59:00.882662 - Requested to load FluxClipModel_ 2025-09-01T14:59:00.889639 - loaded completely 9.5367431640625e+25 4777.53759765625 True 2025-09-01T14:59:00.998583 - CLIP/text encoder model load device: cuda:0, offload device: cpu, current: cuda:0, dtype: torch.float16 2025-09-01T14:59:01.063367 - clip missing: ['text_projection.weight'] 2025-09-01T14:59:01.722971 - FETCH ComfyRegistry Data: 5/962025-09-01T14:59:01.722971 - 2025-09-01T14:59:03.042519 - model weight dtype torch.float8_e4m3fn, manual cast: torch.bfloat16 2025-09-01T14:59:03.043516 - model_type FLUX 2025-09-01T14:59:11.471386 - FETCH ComfyRegistry Data: 10/962025-09-01T14:59:11.473376 - 2025-09-01T14:59:11.998346 - Requested to load Flux 2025-09-01T14:59:18.503848 - loaded completely 0.0 11350.067443847656 True 2025-09-01T14:59:18.514805 - Patching comfy attention to use sageattn2025-09-01T14:59:18.514805 - 2025-09-01T14:59:18.688225 - 0%| | 0/20 [00:00<?, ?it/s]2025-09-01T14:59:20.150041 - FETCH ComfyRegistry Data: 15/962025-09-01T14:59:20.150041 - 2025-09-01T14:59:28.628200 - 40%|█████████████████████████████████▏ | 8/20 [00:09<00:14, 1.17s/it]2025-09-01T14:59:29.656666 - FETCH ComfyRegistry Data: 20/962025-09-01T14:59:29.657170 - 2025-09-01T14:59:37.969589 - 80%|█████████████████████████████████████████████████████████████████▌ | 16/20 [00:19<00:04, 1.16s/it]2025-09-01T14:59:38.276116 - FETCH ComfyRegistry Data: 25/962025-09-01T14:59:38.276619 - 2025-09-01T14:59:42.606388 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:23<00:00, 1.16s/it]2025-09-01T14:59:42.609378 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:23<00:00, 1.20s/it]2025-09-01T14:59:42.610375 - 2025-09-01T14:59:42.612369 - Restoring initial comfy attention2025-09-01T14:59:42.613364 - 2025-09-01T14:59:43.566091 - Requested to load AutoencodingEngine 2025-09-01T14:59:44.164328 - loaded completely 0.0 159.87335777282715 True 2025-09-01T14:59:44.683600 - comfyui lumi batcher overwrite task done2025-09-01T14:59:44.684596 - 2025-09-01T14:59:44.695560 - Prompt executed in 44.16 seconds 2025-09-01T14:59:47.355547 - FETCH ComfyRegistry Data: 30/962025-09-01T14:59:47.355547 - 2025-09-01T14:59:50.013416 - got prompt 2025-09-01T14:59:50.431031 - loaded completely 0.0 11350.067443847656 True 2025-09-01T14:59:50.435018 - Patching comfy attention to use sageattn2025-09-01T14:59:50.435018 - 2025-09-01T14:59:55.538670 - 25%|████████████████████▊ | 5/20 [00:05<00:16, 1.11s/it]2025-09-01T14:59:56.060186 - FETCH ComfyRegistry Data: 35/962025-09-01T14:59:56.060689 - 2025-09-01T15:00:03.927199 - 60%|█████████████████████████████████████████████████▏ | 12/20 [00:13<00:09, 1.19s/it]2025-09-01T15:00:04.665127 - FETCH ComfyRegistry Data: 40/962025-09-01T15:00:04.666123 - 2025-09-01T15:00:13.251827 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.14s/it]2025-09-01T15:00:13.252823 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.14s/it]2025-09-01T15:00:13.252823 - 2025-09-01T15:00:13.253821 - Restoring initial comfy attention2025-09-01T15:00:13.253821 - 2025-09-01T15:00:13.397095 - FETCH ComfyRegistry Data: 45/962025-09-01T15:00:13.397604 - 2025-09-01T15:00:14.837381 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:00:15.176809 - comfyui lumi batcher overwrite task done2025-09-01T15:00:15.177805 - 2025-09-01T15:00:15.179799 - Prompt executed in 25.16 seconds 2025-09-01T15:00:22.087367 - FETCH ComfyRegistry Data: 50/962025-09-01T15:00:22.088368 - 2025-09-01T15:00:26.342724 - got prompt 2025-09-01T15:00:27.137497 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:00:27.148464 - Patching comfy attention to use sageattn2025-09-01T15:00:27.148464 - 2025-09-01T15:00:29.963897 - 15%|████████████▍ | 3/20 [00:02<00:17, 1.03s/it]2025-09-01T15:00:30.838878 - FETCH ComfyRegistry Data: 55/962025-09-01T15:00:30.839380 - 2025-09-01T15:00:39.316242 - 55%|█████████████████████████████████████████████ | 11/20 [00:12<00:10, 1.17s/it]2025-09-01T15:00:39.731658 - FETCH ComfyRegistry Data: 60/962025-09-01T15:00:39.737147 - 2025-09-01T15:00:47.708181 - 90%|█████████████████████████████████████████████████████████████████████████▊ | 18/20 [00:20<00:02, 1.20s/it]2025-09-01T15:00:48.592029 - FETCH ComfyRegistry Data: 65/962025-09-01T15:00:48.592029 - 2025-09-01T15:00:50.028377 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.18s/it]2025-09-01T15:00:50.029376 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.14s/it]2025-09-01T15:00:50.029376 - 2025-09-01T15:00:50.030370 - Restoring initial comfy attention2025-09-01T15:00:50.030370 - 2025-09-01T15:00:51.666354 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:00:52.027193 - comfyui lumi batcher overwrite task done2025-09-01T15:00:52.027193 - 2025-09-01T15:00:52.033721 - Prompt executed in 25.69 seconds 2025-09-01T15:00:57.732591 - FETCH ComfyRegistry Data: 70/962025-09-01T15:00:57.732591 - 2025-09-01T15:01:02.463536 - got prompt 2025-09-01T15:01:03.089034 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:01:03.098004 - Patching comfy attention to use sageattn2025-09-01T15:01:03.098004 - 2025-09-01T15:01:05.773837 - 15%|████████████▍ | 3/20 [00:02<00:17, 1.01s/it]2025-09-01T15:01:06.618083 - FETCH ComfyRegistry Data: 75/962025-09-01T15:01:06.618083 - 2025-09-01T15:01:15.225214 - 55%|█████████████████████████████████████████████ | 11/20 [00:12<00:10, 1.17s/it]2025-09-01T15:01:15.559178 - FETCH ComfyRegistry Data: 80/962025-09-01T15:01:15.559178 - 2025-09-01T15:01:23.462415 - 90%|█████████████████████████████████████████████████████████████████████████▊ | 18/20 [00:20<00:02, 1.18s/it]2025-09-01T15:01:24.532134 - FETCH ComfyRegistry Data: 85/962025-09-01T15:01:24.532134 - 2025-09-01T15:01:25.823332 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.18s/it]2025-09-01T15:01:25.824332 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.14s/it]2025-09-01T15:01:25.824332 - 2025-09-01T15:01:25.824332 - Restoring initial comfy attention2025-09-01T15:01:25.825360 - 2025-09-01T15:01:27.465611 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:01:27.822201 - comfyui lumi batcher overwrite task done2025-09-01T15:01:27.822201 - 2025-09-01T15:01:27.825191 - Prompt executed in 25.36 seconds 2025-09-01T15:01:33.620743 - FETCH ComfyRegistry Data: 90/962025-09-01T15:01:33.620743 - 2025-09-01T15:01:43.439162 - FETCH ComfyRegistry Data: 95/962025-09-01T15:01:43.439162 - 2025-09-01T15:01:45.474384 - FETCH ComfyRegistry Data [DONE]2025-09-01T15:01:45.474384 - 2025-09-01T15:01:45.625519 - [ComfyUI-Manager] default cache updated: https://api.comfy.org/nodes 2025-09-01T15:01:45.715218 - FETCH DATA from: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/custom-node-list.json2025-09-01T15:01:45.715218 - 2025-09-01T15:01:47.345156 - got prompt 2025-09-01T15:01:47.361993 - Requested to load Flux 2025-09-01T15:01:47.516137 - [DONE]2025-09-01T15:01:47.516137 - 2025-09-01T15:01:47.591887 - [ComfyUI-Manager] All startup tasks have been completed. 2025-09-01T15:01:48.028249 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:02:12.473821 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:24<00:00, 1.26s/it]2025-09-01T15:02:12.474817 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:24<00:00, 1.22s/it]2025-09-01T15:02:12.474817 - 2025-09-01T15:02:14.322793 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:02:14.683971 - comfyui lumi batcher overwrite task done2025-09-01T15:02:14.683971 - 2025-09-01T15:02:14.685964 - Prompt executed in 27.34 seconds 2025-09-01T15:02:19.663561 - got prompt 2025-09-01T15:02:20.178226 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:02:44.645309 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:24<00:00, 1.25s/it]2025-09-01T15:02:44.646305 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:24<00:00, 1.22s/it]2025-09-01T15:02:44.646305 - 2025-09-01T15:02:46.461739 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:02:46.818816 - comfyui lumi batcher overwrite task done2025-09-01T15:02:46.818816 - 2025-09-01T15:02:46.820813 - Prompt executed in 27.16 seconds 2025-09-01T15:02:53.822858 - got prompt 2025-09-01T15:02:53.845781 - Requested to load Flux 2025-09-01T15:02:54.625791 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:02:54.635757 - Patching comfy attention to use sageattn2025-09-01T15:02:54.635757 - 2025-09-01T15:03:17.948689 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:23<00:00, 1.19s/it]2025-09-01T15:03:17.950687 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:23<00:00, 1.17s/it]2025-09-01T15:03:17.951683 - 2025-09-01T15:03:17.953675 - Restoring initial comfy attention2025-09-01T15:03:17.953675 - 2025-09-01T15:03:19.664335 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:03:20.021412 - comfyui lumi batcher overwrite task done2025-09-01T15:03:20.021412 - 2025-09-01T15:03:20.027392 - Prompt executed in 26.20 seconds 2025-09-01T15:03:29.398450 - got prompt 2025-09-01T15:03:30.062602 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:03:30.071572 - Patching comfy attention to use sageattn2025-09-01T15:03:30.071572 - 2025-09-01T15:03:52.914438 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.17s/it]2025-09-01T15:03:52.915434 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.14s/it]2025-09-01T15:03:52.915434 - 2025-09-01T15:03:52.916431 - Restoring initial comfy attention2025-09-01T15:03:52.916431 - 2025-09-01T15:03:54.593879 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:03:54.936053 - comfyui lumi batcher overwrite task done2025-09-01T15:03:54.937051 - 2025-09-01T15:03:54.938046 - Prompt executed in 25.54 seconds 2025-09-01T15:05:17.191259 - got prompt 2025-09-01T15:05:17.823083 - loaded completely 0.0 11350.067443847656 True 2025-09-01T15:05:17.832052 - Patching comfy attention to use sageattn2025-09-01T15:05:17.833050 - 2025-09-01T15:05:40.406129 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.16s/it]2025-09-01T15:05:40.406129 - 100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00, 1.13s/it]2025-09-01T15:05:40.406999 - 2025-09-01T15:05:40.407512 - Restoring initial comfy attention2025-09-01T15:05:40.407512 - 2025-09-01T15:05:42.007023 - loaded completely 0.0 159.87335777282715 True 2025-09-01T15:05:42.368928 - comfyui lumi batcher overwrite task done2025-09-01T15:05:42.368928 - 2025-09-01T15:05:42.370921 - Prompt executed in 25.18 seconds 2025-09-01T15:18:47.644508 - got prompt 2025-09-01T15:18:59.759942 - T5Encoder: 29%|███████████████████████████████████████████████████████▏ | 7/24 [00:00<00:00, 69.54it/s]2025-09-01T15:18:59.794825 - T5Encoder: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [00:00<00:00, 177.06it/s]2025-09-01T15:18:59.795821 - 2025-09-01T15:19:00.091094 - T5Encoder: 0%| | 0/24 [00:00<?, ?it/s]2025-09-01T15:19:00.139935 - T5Encoder: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [00:00<00:00, 501.63it/s]2025-09-01T15:19:00.140927 - 2025-09-01T15:19:16.616558 - CUDA Compute Capability: 8.9 2025-09-01T15:19:16.616558 - Detected model in_channels: 16 2025-09-01T15:19:16.617551 - Model cross attention type: t2v, num_heads: 40, num_layers: 40 2025-09-01T15:19:16.618547 - Model variant detected: 14B 2025-09-01T15:19:17.079385 - model_type FLOW 2025-09-01T15:19:17.592839 - Loading LoRA: Wan2.2加速\Wan21_T2V_14B_lightx2v_cfg_step_distill_lora_rank32 with strength: 3.0 2025-09-01T15:19:17.807323 - Using accelerate to load and assign model weights to device... 2025-09-01T15:19:24.630193 - Loading transformer parameters to cuda:0: 83%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌ | 906/1095 [00:06<00:00, 966.70it/s]2025-09-01T15:19:24.655110 - Loading transformer parameters to cuda:0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1095/1095 [00:06<00:00, 159.93it/s]2025-09-01T15:19:24.656107 - 2025-09-01T15:19:24.657103 - Using 1052 LoRA weight patches for WanVideo model 2025-09-01T15:19:25.598506 - sigmas: tensor([1.0000, 0.9600, 0.8889, 0.7272, 0.0000]) 2025-09-01T15:19:25.599502 - timesteps: tensor([999, 959, 888, 727], device='cuda:0') 2025-09-01T15:19:25.599502 - Using per-step cfg list: [2.0, 1.0, 1.0, 1.0] 2025-09-01T15:19:25.973765 - Input sequence length: 31050 2025-09-01T15:19:25.973765 - Sampling 89 frames at 720x480 with 4 steps 2025-09-01T15:21:45.420019 - 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [02:19<00:00, 26.10s/it]2025-09-01T15:21:45.421016 - 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [02:19<00:00, 34.77s/it]2025-09-01T15:21:45.421016 - 2025-09-01T15:21:47.906432 - Allocated memory: memory=0.097 GB 2025-09-01T15:21:47.906432 - Max allocated memory: max_memory=12.714 GB 2025-09-01T15:21:47.907430 - Max reserved memory: max_reserved=12.938 GB 2025-09-01T15:21:48.211045 - CUDA Compute Capability: 8.9 2025-09-01T15:21:48.211045 - Detected model in_channels: 16 2025-09-01T15:21:48.212042 - Model cross attention type: t2v, num_heads: 40, num_layers: 40 2025-09-01T15:21:48.213039 - Model variant detected: 14B 2025-09-01T15:21:48.689720 - model_type FLOW 2025-09-01T15:21:49.195154 - Loading LoRA: Wan2.2加速\Wan21_T2V_14B_lightx2v_cfg_step_distill_lora_rank32 with strength: 1.0 2025-09-01T15:21:49.294817 - Using accelerate to load and assign model weights to device... 2025-09-01T15:21:58.279127 - Loading transformer parameters to cuda:0: 51%|█████████████████████████████████████████████████████████████████████████████▊ | 553/1095 [00:08<00:18, 29.40it/s]2025-09-01T15:21:58.373810 - Loading transformer parameters to cuda:0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1095/1095 [00:09<00:00, 120.63it/s]2025-09-01T15:21:58.373810 - 2025-09-01T15:21:58.386767 - Using 1052 LoRA weight patches for WanVideo model 2025-09-01T15:21:58.555691 - sigmas: tensor([0.]) 2025-09-01T15:21:58.556688 - timesteps: tensor([], device='cuda:0', dtype=torch.int64) 2025-09-01T15:22:00.877498 - Input sequence length: 31050 2025-09-01T15:22:00.878495 - Sampling 89 frames at 720x480 with 0 steps 2025-09-01T15:22:01.295938 - 0it [00:00, ?it/s]2025-09-01T15:22:01.297932 - 0it [00:00, ?it/s]2025-09-01T15:22:01.297932 - 2025-09-01T15:22:01.847336 - Allocated memory: memory=0.053 GB 2025-09-01T15:22:01.847336 - Max allocated memory: max_memory=7.034 GB 2025-09-01T15:22:01.847336 - Max reserved memory: max_reserved=7.094 GB 2025-09-01T15:22:02.003449 - !!! Exception during processing !!! cannot access local variable 'callback_latent' where it is not associated with a value 2025-09-01T15:22:02.009429 - Traceback (most recent call last): File "G:\comfyui\ComfyUI\execution.py", line 496, in execute output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\comfyui\ComfyUI\execution.py", line 315, in get_output_data return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\comfyui\ComfyUI\execution.py", line 289, in _async_map_node_over_list await process_inputs(input_dict, i) File "G:\comfyui\ComfyUI\execution.py", line 277, in process_inputs result = f(**inputs) ^^^^^^^^^^^ File "G:\comfyui\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 3988, in process "samples": callback_latent.unsqueeze(0).cpu() if callback is not None else None, ^^^^^^^^^^^^^^^ UnboundLocalError: cannot access local variable 'callback_latent' where it is not associated with a value 2025-09-01T15:22:02.017402 - comfyui lumi batcher overwrite task done2025-09-01T15:22:02.017402 - 2025-09-01T15:22:02.024379 - Prompt executed in 194.37 seconds 2025-09-01T15:26:18.533291 - got prompt 2025-09-01T15:26:18.565355 - Using accelerate to load and assign model weights to device... 2025-09-01T15:26:25.545938 - Loading transformer parameters to cuda:0: 64%|█████████████████████████████████████████████████████████████████████████████████████████████████▌ | 698/1095 [00:06<00:00, 569.60it/s]2025-09-01T15:26:25.588794 - Loading transformer parameters to cuda:0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1095/1095 [00:07<00:00, 155.95it/s]2025-09-01T15:26:25.588794 - 2025-09-01T15:26:25.589791 - Using 1052 LoRA weight patches for WanVideo model 2025-09-01T15:26:25.652581 - sigmas: tensor([1.0000, 0.9600, 0.8889, 0.7272, 0.0000]) 2025-09-01T15:26:25.652581 - timesteps: tensor([999, 959, 888, 727], device='cuda:0') 2025-09-01T15:26:25.654574 - Using per-step cfg list: [2.0, 1.0, 1.0, 1.0] 2025-09-01T15:26:26.099813 - Input sequence length: 31050 2025-09-01T15:26:26.099813 - Sampling 89 frames at 720x480 with 4 steps 2025-09-01T15:28:34.761959 - 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [02:08<00:00, 24.73s/it]2025-09-01T15:28:34.763951 - 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [02:08<00:00, 32.06s/it]2025-09-01T15:28:34.764948 - 2025-09-01T15:28:37.388334 - Allocated memory: memory=0.097 GB 2025-09-01T15:28:37.389330 - Max allocated memory: max_memory=11.671 GB 2025-09-01T15:28:37.390934 - Max reserved memory: max_reserved=12.312 GB 2025-09-01T15:28:37.402353 - Using accelerate to load and assign model weights to device... 2025-09-01T15:28:42.447834 - Loading transformer parameters to cuda:0: 47%|████████████████████████████████████████████████████████████████████████▍ | 518/1095 [00:05<00:02, 266.27it/s]2025-09-01T15:28:42.541592 - Loading transformer parameters to cuda:0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1095/1095 [00:05<00:00, 213.15it/s]2025-09-01T15:28:42.541592 - 2025-09-01T15:28:42.542513 - Using 1052 LoRA weight patches for WanVideo model 2025-09-01T15:28:42.585369 - sigmas: tensor([0.]) 2025-09-01T15:28:42.585369 - timesteps: tensor([], device='cuda:0', dtype=torch.int64) 2025-09-01T15:28:42.834138 - Input sequence length: 31050 2025-09-01T15:28:42.835132 - Sampling 89 frames at 720x480 with 0 steps 2025-09-01T15:28:43.084302 - 0it [00:00, ?it/s]2025-09-01T15:28:43.089282 - 0it [00:00, ?it/s]2025-09-01T15:28:43.089282 - 2025-09-01T15:28:43.383958 - Allocated memory: memory=0.053 GB 2025-09-01T15:28:43.383958 - Max allocated memory: max_memory=7.034 GB 2025-09-01T15:28:43.384950 - Max reserved memory: max_reserved=7.094 GB 2025-09-01T15:28:43.414091 - !!! Exception during processing !!! cannot access local variable 'callback_latent' where it is not associated with a value 2025-09-01T15:28:43.418074 - Traceback (most recent call last): File "G:\comfyui\ComfyUI\execution.py", line 496, in execute output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\comfyui\ComfyUI\execution.py", line 315, in get_output_data return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\comfyui\ComfyUI\execution.py", line 289, in _async_map_node_over_list await process_inputs(input_dict, i) File "G:\comfyui\ComfyUI\execution.py", line 277, in process_inputs result = f(**inputs) ^^^^^^^^^^^ File "G:\comfyui\ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\nodes.py", line 3988, in process "samples": callback_latent.unsqueeze(0).cpu() if callback is not None else None, ^^^^^^^^^^^^^^^ UnboundLocalError: cannot access local variable 'callback_latent' where it is not associated with a value 2025-09-01T15:28:43.423058 - comfyui lumi batcher overwrite task done2025-09-01T15:28:43.423058 - 2025-09-01T15:28:43.428044 - Prompt executed in 144.88 seconds ``` ## Attached Workflow Please make sure that workflow does not contain any sensitive information such as API keys or passwords. ``` Workflow too large. Please manually upload the workflow from local file system. ``` ## Additional Context (Please add any additional context or steps to reproduce the error here) 报错的原因,怎么解决
09-02
(pytorch_env) PS E:\PyTorch_Build\pytorch> # 查找实际安装位置 (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPath = Get-ChildItem -Path C:\ -Recurse -Filter conda.bat -ErrorAction SilentlyContinue | >> Select-Object -First 1 | >> ForEach-Object { $_.DirectoryName } (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> if ($condaPath) { >> $env:PATH = "$condaPath;$env:PATH" >> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") >> Write-Host "Conda found at: $condaPath" -ForegroundColor Green >> } else { >> # 如果找不到,使用新安装的Miniconda >> $env:PATH = "C:\Miniconda3\Scripts;$env:PATH" >> } Conda found at: C:\Miniconda3\condabin (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda --version conda 25.7.0 (pytorch_env) PS E:\PyTorch_Build\pytorch> # 使用conda安装必要组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge -y ` >> libuv=1.46 ` >> openssl=3.1 ` >> numpy ` >> mkl=2024.1 ` >> mkl-include=2024.1 CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please accept or remove them before proceeding: - https://repo.anaconda.com/pkgs/main - https://repo.anaconda.com/pkgs/r - https://repo.anaconda.com/pkgs/msys2 To accept these channels' Terms of Service, run the following commands: conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/msys2 For information on safely removing channels from your conda configuration, please see the official documentation: https://www.anaconda.com/docs/tools/working-with-conda/channels (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证MKL安装 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print(f'MKL version: {mkl.__version__}')" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> # 使用conda安装必要组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge -y ` >> libuv=1.46 ` >> openssl=3.1 ` >> numpy ` >> mkl=2024.1 ` >> mkl-include=2024.1 CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please accept or remove them before proceeding: - https://repo.anaconda.com/pkgs/main - https://repo.anaconda.com/pkgs/r - https://repo.anaconda.com/pkgs/msys2 To accept these channels' Terms of Service, run the following commands: conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/msys2 For information on safely removing channels from your conda configuration, please see the official documentation: https://www.anaconda.com/docs/tools/working-with-conda/channels (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证MKL安装 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print(f'MKL version: {mkl.__version__}')" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> # 清理构建缓存 (pytorch_env) PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force build, dist Remove-Item: Cannot find path 'E:\PyTorch_Build\pytorch\dist' because it does not exist. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 设置构建参数 (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDNN = "1" (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:MAX_JOBS = [Environment]::ProcessorCount (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 开始构建(添加详细日志) (pytorch_env) PS E:\PyTorch_Build\pytorch> python setup.py install --cmake 2>&1 | Tee-Object -FilePath build_log.txt Building wheel torch-2.9.0a0+git2d31c3d -- Building version 2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\pytorch_env\lib\site-packages\setuptools\_distutils\_msvccompiler.py:12: UserWarning: _get_vc_env is private; find an alternative (pypa/distutils#340) warnings.warn( cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -DCUDNN_INCLUDE_DIR=E:\Program Files\NVIDIA\CUNND\v9.12\include -DCUDNN_LIBRARY=E:\Program Files\NVIDIA\CUNND\v9.12\lib\x64\cudnn.lib -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DUSE_CUDNN=1 -DUSE_NUMPY=True E:\PyTorch_Build\pytorch CMake Deprecation Warning at CMakeLists.txt:18 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is MSVC 19.44.35215.0 -- The C compiler identification is MSVC 19.44.35215.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:425 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:427 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:439 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:845 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") -- The CUDA compiler identification is NVIDIA 13.0.48 with host compiler MSVC 19.44.35215.0 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include (found version "13.0.48") -- PyTorch: CUDA detected: 13.0 -- PyTorch: CUDA nvcc is: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- PyTorch: Header version is: 13.0 -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:201 (message): Cannot find cuDNN library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUSPARSELT (missing: CUSPARSELT_LIBRARY_PATH CUSPARSELT_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:226 (message): Cannot find cuSPARSELt library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDSS (missing: CUDSS_LIBRARY_PATH CUDSS_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:242 (message): Cannot find CUDSS library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- USE_CUFILE is set to 0. Compiling without cuFile support -- Autodetected CUDA architecture(s): 12.0 CMake Warning at cmake/public/cuda.cmake:317 (message): pytorch is not compatible with `CMAKE_CUDA_ARCHITECTURES` and will ignore its value. Please configure `TORCH_CUDA_ARCH_LIST` instead. Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Added CUDA NVCC flags for: -gencode;arch=compute_120,code=sm_120 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL. Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Warning at cmake/ProtoBuf.cmake:37 (message): Ancient protobuf forces CMake compatibility Call Stack (most recent call first): cmake/ProtoBuf.cmake:87 (custom_protobuf_find) cmake/Dependencies.cmake:107 (include) CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:E:/PyTorch_Build/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- MKL_THREADING = OMP CMake Warning at cmake/Dependencies.cmake:213 (message): MKL could not be found. Defaulting to Eigen Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Warning at cmake/Dependencies.cmake:279 (message): Preferred BLAS (MKL) cannot be found, now searching for a general BLAS library Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Looking for sgemm_ -- Looking for sgemm_ - not found -- Cannot find a library with BLAS API. Not using BLAS. -- Using pocketfft in directory: E:/PyTorch_Build/pytorch/third_party/pocketfft/ CMake Deprecation Warning at third_party/pthreadpool/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/FXdiv/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/cpuinfo/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- The ASM compiler identification is MSVC CMake Warning (dev) at pytorch_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineASMCompiler.cmake:234 (message): Policy CMP194 is not set: MSVC is not an assembler for language ASM. Run "cmake --help-policy CMP194" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): third_party/XNNPACK/CMakeLists.txt:18 (PROJECT) This warning is for project developers. Use -Wno-dev to suppress it. -- Found assembler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc -- Found Git: E:/Program Files/Git/cmd/git.exe (found version "2.51.0.windows.1") -- Google Benchmark version: v1.9.3, normalized to 1.9.3 -- Looking for shm_open in rt -- Looking for shm_open in rt - not found -- Performing Test HAVE_CXX_FLAG_WX -- Performing Test HAVE_CXX_FLAG_WX - Success -- Compiling and running to test HAVE_STD_REGEX -- Performing Test HAVE_STD_REGEX -- success -- Compiling and running to test HAVE_GNU_POSIX_REGEX -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_POSIX_REGEX -- Performing Test HAVE_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_STEADY_CLOCK -- Performing Test HAVE_STEADY_CLOCK -- success -- Compiling and running to test HAVE_PTHREAD_AFFINITY -- Performing Test HAVE_PTHREAD_AFFINITY -- failed to compile CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning at cmake/Dependencies.cmake:749 (message): FP16 is only cmake-2.8 compatible Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- Using third party subdirectory Eigen. -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter Development.Module missing components: NumPy CMake Warning at cmake/Dependencies.cmake:826 (message): NumPy could not be found. Not building with NumPy. Suppress this warning with -DUSE_NUMPY=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Using third_party/pybind11. -- pybind11 include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:894 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- Found OpenMP_C: -openmp:experimental -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib -- Found nvtx3: E:/PyTorch_Build/pytorch/third_party/NVTX/c/include -- ROCM_PATH environment variable is not set and C:/opt/rocm does not exist. Building without ROCm support. -- Found Python3: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter -- ONNX_PROTOC_EXECUTABLE: $<TARGET_FILE:protobuf::protoc> -- Protobuf_VERSION: Protobuf_VERSION_NOTFOUND Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.44.35215.0 -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- CMAKE_MODULE_PATH : E:/PyTorch_Build/pytorch/cmake/Modules;E:/PyTorch_Build/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.18.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : $<TARGET_FILE:protobuf::protoc> -- Protobuf includes : -- Protobuf libraries : -- ONNX_BUILD_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- MAGMA not found. Compiling without MAGMA support -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Cannot find a library with BLAS API. Not using BLAS. -- LAPACK requires BLAS -- Cannot find a library with LAPACK API. Not using LAPACK. -- MIOpen not found. Compiling without MIOpen support disabling ROCM because NOT USE_ROCM is set disabling MKLDNN because USE_MKLDNN is not set -- {fmt} version: 11.2.0 -- Build type: Release -- Using Kineto with CUPTI support -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static -- CUDA_SOURCE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA_INCLUDE_DIRS = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- CUDA_cupti_LIBRARY = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/lib64/cupti.lib -- Found CUPTI CMake Deprecation Warning at third_party/kineto/libkineto/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/python.exe (found version "3.10.10") -- ROCM_SOURCE_DIR = -- Kineto: FMT_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- ROCTRACER_INCLUDE_DIR = /include/roctracer -- DYNOLOG_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog/ -- IPCFABRIC_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Architecture: x64 -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library name : mimalloc -- Version : 2.2.4 -- Build type : release -- C++ Compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : MI_CMAKE_BUILD_TYPE=release;MI_BUILD_RELEASE -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- CMake Error at CMakeLists.txt:1264 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/headeronly does not contain a CMakeLists.txt file. -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- headers outputs: torch\csrc\inductor\aoti_torch\generated\c_shim_cpu.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_aten.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_cuda.h not found -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY OPENSSL_INCLUDE_DIR) -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP_CUDA: -openmp (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.8.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe CMake: 4.1.0 Make program: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/enum_tag.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/TensorBody.h CMake Error: File E:/PyTorch_Build/pytorch/torch/_utils_internal.py does not exist. CMake Error at caffe2/CMakeLists.txt:241 (configure_file): configure_file Problem configuring file CMake Error: File E:/PyTorch_Build/pytorch/torch/csrc/api/include/torch/version.h.in does not exist. CMake Error at caffe2/CMakeLists.txt:246 (configure_file): configure_file Problem configuring file -- NVSHMEM not found, not building with NVSHMEM support. CMake Error at caffe2/CMakeLists.txt:1398 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch does not contain a CMakeLists.txt file. CMake Warning at CMakeLists.txt:1285 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.44.35215.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;EXPORT_AOTI_FUNCTIONS;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.9.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : True -- Python version : 3.10.10 -- Python executable : E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -- Python library : E:/Python310/libs/python310.lib -- Python includes : E:/Python310/Include -- Python site-package : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : True -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 0 -- USE_LAPACK : 0 -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : ON -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_CUSPARSELT : OFF -- USE_CUDSS : OFF -- USE_CUFILE : OFF -- CUDA version : 13.0 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- CUDA root directory : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cuda.lib -- cudart library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart.lib -- cublas library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cublas.lib -- cufft library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cufft.lib -- curand library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/curand.lib -- cusparse library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cusparse.lib -- nvrtc : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/nvrtc.lib -- CUDA include path : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- NVCC executable : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA compiler : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_120,code=sm_120 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : ON -- USE_EIGEN_FOR_SPARSE : OFF -- USE_FBGEMM : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_XCCL : OFF -- USE_NCCL : OFF -- Found NVSHMEM : -- USE_NNPACK : OFF -- USE_NUMPY : OFF -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : OFF -- Public Dependencies : -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;ittnotify;fp16;caffe2::openmp;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;fmt::fmt-header-only;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring incomplete, errors occurred! -- Checkout nccl release tag: v2.27.5-1 (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证构建 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'cuDNN version: {torch.backends.cudnn.version()}')" Traceback (most recent call last): File "<string>", line 1, in <module> AttributeError: module 'torch' has no attribute 'backends' (pytorch_env) PS E:\PyTorch_Build\pytorch> # 检查核心组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; >> print(f'PyTorch: {torch.__version__}'); >> print(f'CUDA available: {torch.cuda.is_available()}'); >> print(f'cuDNN: {torch.backends.cudnn.version()}'); >> print(f'MKL: {torch.__config__.mkl_is_available()}'); >> print(f'Libuv: {torch.distributed.is_available()}')" Traceback (most recent call last): File "<string>", line 2, in <module> AttributeError: module 'torch' has no attribute '__version__' (pytorch_env) PS E:\PyTorch_Build\pytorch>
最新发布
09-02
PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> # 1. 激活虚拟环境 PS E:\PyTorch_Build\pytorch> .\pytorch_env\Scripts\activate (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 2. 修复conda路径(执行一次即可) (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPath = "${env:USERPROFILE}\miniconda3\Scripts" (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:PATH += ";$condaPath" (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 3. 验证修复 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda --version # 应显示conda版本 conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 1. 安装正确版本的MKL (pytorch_env) PS E:\PyTorch_Build\pytorch> pip uninstall -y mkl-static mkl-include Found existing installation: mkl-static 2024.1.0 Uninstalling mkl-static-2024.1.0: Successfully uninstalled mkl-static-2024.1.0 Found existing installation: mkl-include 2024.1.0 Uninstalling mkl-include-2024.1.0: Successfully uninstalled mkl-include-2024.1.0 (pytorch_env) PS E:\PyTorch_Build\pytorch> pip install mkl-static==2024.1 mkl-include==2024.1 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting mkl-static==2024.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d8/f0/3b9976df82906d8f3244213b6d8beb67cda19ab5b0645eb199da3c826127/mkl_static-2024.1.0-py2.py3-none-win_amd64.whl (220.8 MB) Collecting mkl-include==2024.1 Using cached https://pypi.tuna.tsinghua.edu.cn/packages/06/1b/f05201146f7f12bf871fa2c62096904317447846b5d23f3560a89b4bbaae/mkl_include-2024.1.0-py2.py3-none-win_amd64.whl (1.3 MB) Requirement already satisfied: intel-openmp==2024.* in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from mkl-static==2024.1) (2024.2.1) Requirement already satisfied: tbb-devel==2021.* in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from mkl-static==2024.1) (2021.13.1) Requirement already satisfied: intel-cmplr-lib-ur==2024.2.1 in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from intel-openmp==2024.*->mkl-static==2024.1) (2024.2.1) Requirement already satisfied: tbb==2021.13.1 in e:\pytorch_build\pytorch\pytorch_env\lib\site-packages (from tbb-devel==2021.*->mkl-static==2024.1) (2021.13.1) Installing collected packages: mkl-include, mkl-static Successfully installed mkl-include-2024.1.0 mkl-static-2024.1.0 (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 2. 安装libuv (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge libuv=1.46 conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 3. 安装OpenSSL (pytorch_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openssl=3.1 conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 4. 验证安装 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print('MKL版本:', mkl.__version__)" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> conda list | Select-String "libuv|openssl" conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证所有关键组件 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import mkl; print('✓ MKL已安装')" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'mkl' (pytorch_env) PS E:\PyTorch_Build\pytorch> conda list | Select-String "libuv|openssl" conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> dir "E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin\cudnn*" (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证环境变量 (pytorch_env) PS E:\PyTorch_Build\pytorch> python -c "import os; print('环境变量检查:'); >> print('CUDNN_PATH:', os.getenv('CUDA_PATH')); >> print('CONDA_PREFIX:', os.getenv('CONDA_PREFIX'))" 环境变量检查: CUDNN_PATH: E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0 CONDA_PREFIX: None (pytorch_env) PS E:\PyTorch_Build\pytorch> # 清理并重建 (pytorch_env) PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force build (pytorch_env) PS E:\PyTorch_Build\pytorch> python setup.py install Building wheel torch-2.9.0a0+git2d31c3d -- Building version 2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\pytorch_env\lib\site-packages\setuptools\_distutils\_msvccompiler.py:12: UserWarning: _get_vc_env is private; find an alternative (pypa/distutils#340) warnings.warn( -- Checkout nccl release tag: v2.27.5-1 cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DUSE_NUMPY=True E:\PyTorch_Build\pytorch CMake Deprecation Warning at CMakeLists.txt:18 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is MSVC 19.44.35215.0 -- The C compiler identification is MSVC 19.44.35215.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:425 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:427 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:439 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:845 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") -- The CUDA compiler identification is NVIDIA 13.0.48 with host compiler MSVC 19.44.35215.0 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include (found version "13.0.48") -- PyTorch: CUDA detected: 13.0 -- PyTorch: CUDA nvcc is: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- PyTorch: Header version is: 13.0 -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:201 (message): Cannot find cuDNN library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUSPARSELT (missing: CUSPARSELT_LIBRARY_PATH CUSPARSELT_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:226 (message): Cannot find cuSPARSELt library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDSS (missing: CUDSS_LIBRARY_PATH CUDSS_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:242 (message): Cannot find CUDSS library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- USE_CUFILE is set to 0. Compiling without cuFile support -- Autodetected CUDA architecture(s): 12.0 CMake Warning at cmake/public/cuda.cmake:317 (message): pytorch is not compatible with `CMAKE_CUDA_ARCHITECTURES` and will ignore its value. Please configure `TORCH_CUDA_ARCH_LIST` instead. Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Added CUDA NVCC flags for: -gencode;arch=compute_120,code=sm_120 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL. Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Warning at cmake/ProtoBuf.cmake:37 (message): Ancient protobuf forces CMake compatibility Call Stack (most recent call first): cmake/ProtoBuf.cmake:87 (custom_protobuf_find) cmake/Dependencies.cmake:107 (include) CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:E:/PyTorch_Build/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- MKL_THREADING = OMP CMake Warning at cmake/Dependencies.cmake:213 (message): MKL could not be found. Defaulting to Eigen Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Warning at cmake/Dependencies.cmake:279 (message): Preferred BLAS (MKL) cannot be found, now searching for a general BLAS library Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Looking for sgemm_ -- Looking for sgemm_ - not found -- Cannot find a library with BLAS API. Not using BLAS. -- Using pocketfft in directory: E:/PyTorch_Build/pytorch/third_party/pocketfft/ CMake Deprecation Warning at third_party/pthreadpool/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/FXdiv/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/cpuinfo/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- The ASM compiler identification is MSVC CMake Warning (dev) at pytorch_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineASMCompiler.cmake:234 (message): Policy CMP194 is not set: MSVC is not an assembler for language ASM. Run "cmake --help-policy CMP194" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): third_party/XNNPACK/CMakeLists.txt:18 (PROJECT) This warning is for project developers. Use -Wno-dev to suppress it. -- Found assembler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc -- Found Git: E:/Program Files/Git/cmd/git.exe (found version "2.51.0.windows.1") -- Google Benchmark version: v1.9.3, normalized to 1.9.3 -- Looking for shm_open in rt -- Looking for shm_open in rt - not found -- Performing Test HAVE_CXX_FLAG_WX -- Performing Test HAVE_CXX_FLAG_WX - Success -- Compiling and running to test HAVE_STD_REGEX -- Performing Test HAVE_STD_REGEX -- success -- Compiling and running to test HAVE_GNU_POSIX_REGEX -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_POSIX_REGEX -- Performing Test HAVE_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_STEADY_CLOCK -- Performing Test HAVE_STEADY_CLOCK -- success -- Compiling and running to test HAVE_PTHREAD_AFFINITY -- Performing Test HAVE_PTHREAD_AFFINITY -- failed to compile CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning at cmake/Dependencies.cmake:749 (message): FP16 is only cmake-2.8 compatible Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- Using third party subdirectory Eigen. -- Found Python: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter Development.Module missing components: NumPy CMake Warning at cmake/Dependencies.cmake:826 (message): NumPy could not be found. Not building with NumPy. Suppress this warning with -DUSE_NUMPY=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Using third_party/pybind11. -- pybind11 include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:894 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- Found OpenMP_C: -openmp:experimental -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib -- Found nvtx3: E:/PyTorch_Build/pytorch/third_party/NVTX/c/include -- ROCM_PATH environment variable is not set and C:/opt/rocm does not exist. Building without ROCm support. -- Found Python3: E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter -- ONNX_PROTOC_EXECUTABLE: $<TARGET_FILE:protobuf::protoc> -- Protobuf_VERSION: Protobuf_VERSION_NOTFOUND Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.44.35215.0 -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- CMAKE_MODULE_PATH : E:/PyTorch_Build/pytorch/cmake/Modules;E:/PyTorch_Build/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.18.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : $<TARGET_FILE:protobuf::protoc> -- Protobuf includes : -- Protobuf libraries : -- ONNX_BUILD_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- MAGMA not found. Compiling without MAGMA support -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Cannot find a library with BLAS API. Not using BLAS. -- LAPACK requires BLAS -- Cannot find a library with LAPACK API. Not using LAPACK. disabling ROCM because NOT USE_ROCM is set -- MIOpen not found. Compiling without MIOpen support disabling MKLDNN because USE_MKLDNN is not set -- {fmt} version: 11.2.0 -- Build type: Release -- Using Kineto with CUPTI support -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static -- CUDA_SOURCE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA_INCLUDE_DIRS = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- CUDA_cupti_LIBRARY = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/lib64/cupti.lib -- Found CUPTI CMake Deprecation Warning at third_party/kineto/libkineto/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/python.exe (found version "3.10.10") -- ROCM_SOURCE_DIR = -- Kineto: FMT_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- ROCTRACER_INCLUDE_DIR = /include/roctracer -- DYNOLOG_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog/ -- IPCFABRIC_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Architecture: x64 -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library name : mimalloc -- Version : 2.2.4 -- Build type : release -- C++ Compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : MI_CMAKE_BUILD_TYPE=release;MI_BUILD_RELEASE -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- CMake Error at CMakeLists.txt:1264 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/headeronly does not contain a CMakeLists.txt file. -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- Autodetected CUDA architecture(s): 12.0 -- headers outputs: torch\csrc\inductor\aoti_torch\generated\c_shim_cpu.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_aten.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_cuda.h not found -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY OPENSSL_INCLUDE_DIR) -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP_CUDA: -openmp (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.8.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe CMake: 4.1.0 Make program: E:/PyTorch_Build/pytorch/pytorch_env/Scripts/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/enum_tag.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/TensorBody.h CMake Error: File E:/PyTorch_Build/pytorch/torch/_utils_internal.py does not exist. CMake Error at caffe2/CMakeLists.txt:241 (configure_file): configure_file Problem configuring file CMake Error: File E:/PyTorch_Build/pytorch/torch/csrc/api/include/torch/version.h.in does not exist. CMake Error at caffe2/CMakeLists.txt:246 (configure_file): configure_file Problem configuring file -- NVSHMEM not found, not building with NVSHMEM support. CMake Error at caffe2/CMakeLists.txt:1398 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch does not contain a CMakeLists.txt file. CMake Warning at CMakeLists.txt:1285 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/pytorch_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.44.35215.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;EXPORT_AOTI_FUNCTIONS;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.9.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : True -- Python version : 3.10.10 -- Python executable : E:\PyTorch_Build\pytorch\pytorch_env\Scripts\python.exe -- Python library : E:/Python310/libs/python310.lib -- Python includes : E:/Python310/Include -- Python site-package : E:\PyTorch_Build\pytorch\pytorch_env\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : True -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 0 -- USE_LAPACK : 0 -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : ON -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_CUSPARSELT : OFF -- USE_CUDSS : OFF -- USE_CUFILE : OFF -- CUDA version : 13.0 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- CUDA root directory : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cuda.lib -- cudart library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart.lib -- cublas library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cublas.lib -- cufft library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cufft.lib -- curand library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/curand.lib -- cusparse library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cusparse.lib -- nvrtc : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/nvrtc.lib -- CUDA include path : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- NVCC executable : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA compiler : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_120,code=sm_120 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : ON -- USE_EIGEN_FOR_SPARSE : OFF -- USE_FBGEMM : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_XCCL : OFF -- USE_NCCL : OFF -- Found NVSHMEM : -- USE_NNPACK : OFF -- USE_NUMPY : OFF -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : OFF -- Public Dependencies : -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;ittnotify;fp16;caffe2::openmp;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;fmt::fmt-header-only;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring incomplete, errors occurred! (pytorch_env) PS E:\PyTorch_Build\pytorch> # 永久修复conda命令不可用问题 (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPaths = @( >> "$env:USERPROFILE\miniconda3\Scripts", >> "$env:USERPROFILE\anaconda3\Scripts", >> "C:\ProgramData\miniconda3\Scripts" >> ) (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> foreach ($path in $condaPaths) { >> if (Test-Path $path) { >> $env:PATH = "$path;$env:PATH" >> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") >> break >> } >> } (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 验证修复 (pytorch_env) PS E:\PyTorch_Build\pytorch> conda --version conda: The term 'conda' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 设置 cuDNN v9.12 路径 (pytorch_env) PS E:\PyTorch_Build\pytorch> $cudnnPath = "E:\Program Files\NVIDIA\CUNND\v9.12" (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 添加到环境变量 (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_ROOT_DIR = $cudnnPath (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_INCLUDE_DIR = "$cudnnPath\include" (pytorch_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_LIBRARY = "$cudnnPath\lib\x64\cudnn.lib" (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> # 永久生效 (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("CUDNN_ROOT_DIR", $cudnnPath, "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("CUDNN_INCLUDE_DIR", "$cudnnPath\include", "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> [Environment]::SetEnvironmentVariable("CUDNN_LIBRARY", "$cudnnPath\lib\x64\cudnn.lib", "Machine") (pytorch_env) PS E:\PyTorch_Build\pytorch> # 原始代码大约在 190 行左右 (pytorch_env) PS E:\PyTorch_Build\pytorch> # 替换为以下内容强制使用 v9.12: (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_VERSION "9.12.0") # 手动指定版本 CUDNN_VERSION: The term 'CUDNN_VERSION' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_FOUND TRUE) CUDNN_FOUND: The term 'CUDNN_FOUND' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_INCLUDE_DIR $ENV{CUDNN_INCLUDE_DIR}) InvalidOperation: The variable '$ENV' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> set(CUDNN_LIBRARY $ENV{CUDNN_LIBRARY}) InvalidOperation: The variable '$ENV' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> message(STATUS "Using manually configured cuDNN v${CUDNN_VERSION}") InvalidOperation: The variable '$CUDNN_VERSION' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> message(STATUS " Include path: ${CUDNN_INCLUDE_DIR}") InvalidOperation: The variable '$CUDNN_INCLUDE_DIR' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> message(STATUS " Library path: ${CUDNN_LIBRARY}") InvalidOperation: The variable '$CUDNN_LIBRARY' cannot be retrieved because it has not been set. (pytorch_env) PS E:\PyTorch_Build\pytorch> # 精确查找 conda.bat (pytorch_env) PS E:\PyTorch_Build\pytorch> $condaPath = Get-ChildItem -Path C:\ -Recurse -Filter conda.bat -ErrorAction SilentlyContinue | >> Select-Object -First 1 | >> ForEach-Object { $_.DirectoryName } (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch> if ($condaPath) { >> $env:PATH = "$condaPath;$env:PATH" >> [Environment]::SetEnvironmentVariable("PATH", $env:PATH, "Machine") >> Write-Host "Conda found at: $condaPath" -ForegroundColor Green >> } else { >> Write-Host "Conda not found! Installing miniconda..." -ForegroundColor Yellow >> # 自动安装 miniconda >> Invoke-WebRequest -Uri "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe" -OutFile "$env:TEMP\miniconda.exe" >> Start-Process -FilePath "$env:TEMP\miniconda.exe" -ArgumentList "/S", "/AddToPath=1", "/InstallationType=AllUsers", "/D=C:\Miniconda3" -Wait >> $env:PATH = "C:\Miniconda3\Scripts;$env:PATH" >> } Conda not found! Installing miniconda... /AddToPath=1 is disabled and ignored in 'All Users' installations Welcome to Miniconda3 py313_25.7.0-2 By continuing this installation you are accepting this license agreement: C:\Miniconda3\EULA.txt Please run the installer in GUI mode to read the details. Miniconda3 will now be installed into this location: C:\Miniconda3 Unpacking payload... Setting up the package cache... Setting up the base environment... Installing packages for base, creating shortcuts if necessary... Initializing conda directories... Setting installation directory permissions... Done! (pytorch_env) PS E:\PyTorch_Build\pytorch> (pytorch_env) PS E:\PyTorch_Build\pytorch>
09-02
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值