Code Jam 2009 Round1C Problem C. Bribe the Prisoners —— 区间DP

Problem

In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. Cells number i and i+1 are adjacent, and prisoners in adjacent cells are called "neighbours." A wall with a window separates adjacent cells, and neighbours can communicate through that window.

All prisoners live in peace until a prisoner is released. When that happens, the released prisoner's neighbours find out, and each communicates this to his other neighbour. That prisoner passes it on to his other neighbour, and so on until they reach a prisoner with no other neighbour (because he is in cell 1, or in cell P, or the other adjacent cell is empty). A prisoner who discovers that another prisoner has been released will angrily break everything in his cell, unless he is bribed with a gold coin. So, after releasing a prisoner in cell A, all prisoners housed on either side of cell A - until cell 1, cell P or an empty cell - need to be bribed.

Assume that each prison cell is initially occupied by exactly one prisoner, and that only one prisoner can be released per day. Given the list of Q prisoners to be released in Qdays, find the minimum total number of gold coins needed as bribes if the prisoners may be released in any order.

Note that each bribe only has an effect for one day. If a prisoner who was bribed yesterday hears about another released prisoner today, then he needs to be bribed again.

Input

The first line of input gives the number of cases, NN test cases follow. Each case consists of 2 lines. The first line is formatted as

P Q
where  P  is the number of prison cells and  Q  is the number of prisoners to be released.
This will be followed by a line with  Q  distinct cell numbers (of the prisoners to be released), space separated, sorted in ascending order.

Output

For each test case, output one line in the format

Case #X: C
where  X  is the case number, starting from 1, and  C  is the minimum number of gold coins needed as bribes.

Limits

1 ≤ N ≤ 100
Q ≤ P
Each cell number is between 1 and P, inclusive.

Small dataset

1 ≤ P ≤ 100
1 ≤ Q ≤ 5

Large dataset

1 ≤ P ≤ 10000
1 ≤ Q ≤ 100

Sample


Input 
 

Output 
 
2
8 1
3
20 3
3 6 14
Case #1: 7
Case #2: 35

Note

In the second sample case, you first release the person in cell 14, then cell 6, then cell 3. The number of gold coins needed is 19 + 12 + 4 = 35. If you instead release the person in cell 6 first, the cost will be 19 + 4 + 13 = 36.

典型的区间DP,题意是给你一排p个牢房,最初的时候每个牢房中有一个人,给出一个A数组表示我们要释放的人的位置,我们设定释放一个囚犯,我们要给他左边直到空牢房或墙和右边直到空牢房或墙的每个囚犯一枚金币。请你设计释放的顺序使得总花费最小,输出最小花费。

思路时释放某个人的花费为他左边连续的人数+他右边连续的人数,我们可以按此递推。

我们用dp[i][j]表示释放从第i个人到第j个人的最小花费(不包括端点)。然后进行O(n^3)的枚举即可。

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <map>
#include <string>
#include <stack>
#include <cctype>
#include <vector>
#include <queue>
#include <set>
#include <utility>
#include <cassert>
using namespace std;
///#define Online_Judge
#define outstars cout << "***********************" << endl;
#define clr(a,b) memset(a,b,sizeof(a))
#define lson l , mid  , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mk make_pair
#define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++)
#define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++)
#define REP(i , x , n) for(int i = (x) ; i > (n) ; i--)
#define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--)
const int MAXN = 100 + 50;
const int MAXS = 10000 + 50;
const int sigma_size = 26;
const long long LLMAX = 0x7fffffffffffffffLL;
const long long LLMIN = 0x8000000000000000LL;
const int INF = 0x7fffffff;
const int IMIN = 0x80000000;
const int inf = 1 << 30;
#define eps 1e-8
const long long MOD = 1000000000 + 7;
const int mod = 100000;
typedef long long LL;
const double PI = acos(-1.0);
typedef double D;
typedef pair<int , int> pii;
#define Bug(s) cout << "s = " << s << endl;
///#pragma comment(linker, "/STACK:102400000,102400000")
int n , p , q;
int a[MAXN];
int dp[MAXN][MAXN];
void solve()
{
    FOR(i , 0 , q + 1)dp[i][i + 1] = 0;
    FORR(w , 2 , q + 1)for(int i = 0 ; i + w <= q + 1 ; i++)
    {
        int j = i + w , t = inf;
        FOR(k , i + 1, j)
        {
            t = min(t , dp[i][k] + dp[k][j]);
        }
        dp[i][j] = t + a[j] - a[i] - 2;
    }
}
int main()
{
    freopen("C-large-practice.in" , "r" , stdin);
    freopen("C-large-practice.out" , "w" , stdout);
    int t;
    cin >> t;
    FORR(kase ,1 , t)
    {
        scanf("%d%d",&p , &q);
        FORR(i , 1 , q)
        {
            scanf("%d" , &a[i]);
        }
        a[0] = 0;
        a[q + 1] = p + 1;
//        FOR(i , 0 , q + 2)cout << '*'<< a[i] << endl;
        solve();
//        FOR(i , 0 , q + 2)FOR(j , i + 1 , q + 2)cout << '*' << dp[i][j] << endl;
        printf("Case #%d: %d\n" , kase , dp[0][q + 1]);
    }
    return 0;
}


内容概要:本文详细介绍了基于FPGA的144输出通道可切换电压源系统的设计与实现,涵盖系统总体架构、FPGA硬件设计、上位机软件设计以及系统集成方案。系统由上位机控制软件(PC端)、FPGA控制核心和高压输出模块(144通道)三部分组成。FPGA硬件设计部分详细描述了Verilog代码实现,包括PWM生成模块、UART通信模块和温度监控模块。硬件设计说明中提及了FPGA选型、PWM生成方式、通信接口、高压输出模块和保护电路的设计要点。上位机软件采用Python编写,实现了设备连接、命令发送、序列控制等功能,并提供了一个图形用户界面(GUI)用于方便的操作和配置。 适合人群:具备一定硬件设计和编程基础的电子工程师、FPGA开发者及科研人员。 使用场景及目标:①适用于需要精确控制多通道电压输出的实验环境或工业应用场景;②帮助用户理解和掌握FPGA在复杂控制系统中的应用,包括PWM控制、UART通信及多通道信号处理;③为研究人员提供一个可扩展的平台,用于测试和验证不同的电压源控制算法和策略。 阅读建议:由于涉及硬件和软件两方面的内容,建议读者先熟悉FPGA基础知识和Verilog语言,同时具备一定的Python编程经验。在阅读过程中,应结合硬件电路图和代码注释,逐步理解系统的各个组成部分及其相互关系。此外,实际动手搭建和调试该系统将有助于加深对整个设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值