
数字图像处理
卡帕kalper
逐光。
展开
-
傅立叶变换及频谱图
不同频率信息在图像结构中有不同的作用。图像的主要成分是低频信息,它形成了图像的基本灰度等级,对图像结构的决定作用较小;中频信息决定了图像的基本结构,形成了图像的主要边缘结构;高频信息形成了图像的边缘和细节,是在中频信息上对图像内容的进一步强化。用傅里叶变换可以得到图像的频谱图: 上面的图像左边是原图,右边是频谱图 • 图像的频率是转载 2014-11-19 23:16:56 · 14423 阅读 · 0 评论 -
数字图像处理 傅里叶变换
冈萨雷斯版里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换使我们能通过频率成分来分析一个函数。Fourier theory讲的就是:任何信号(如图像信号)都可以表转载 2014-11-20 00:07:44 · 13450 阅读 · 1 评论 -
Sobel算子 原理
首先,我们来开一下计算机是如何检测边缘的。以灰度图像为例,它的理论基础是这样的,如果出现一个边缘,那么图像的灰度就会有一定的变化,为了方便假设由黑渐变为白代表一个边界,那么对其灰度分析,在边缘的灰度函数就是一个一次函数y=kx,对其求一阶导数就是其斜率k,就是说边缘的一阶导数是一个常数,而由于非边缘的一阶导数为零,这样通过求一阶导数就能初步判断图像的边缘了。通常是X方向和Y方向的导数,也就是梯度。转载 2015-01-14 14:39:30 · 7407 阅读 · 2 评论