An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:6 Push 1 Push 2 Push 3 Pop Pop Push 4 Pop Pop Push 5 Push 6 Pop PopSample Output:
3 4 2 6 5 1 题目意思:中序可以由栈完成。现在给出Push和Pop的操作,求出二叉树的后序。 思路:用一个数组记录节点,Pop的记录为0,Push就记录原本值,然后dfs生成树,然后递归生成后序顺序输出。给出N(30)个节点,如果全部是右子树 用数组得分配特别的内存。用个map记录。 #include <iostream> #include <cstdio> #include <cstring> #include <map> using namespace std; const int maxn = 70; int n, tot; int node[maxn], post[maxn]; map<int, int> tree; void dfs(int idx) { if(node[tot] == 0){ ++tot; return; } tree[idx] = node[tot++]; dfs(2 * idx + 1); dfs(2 * idx + 2); } void postOrder(int idx) { if(tree.count(idx) == 0) return; postOrder(2 * idx + 1); postOrder(2 * idx + 2); post[tot++] = tree[idx]; } int main() { scanf("%d", &n); char str[5]; int key; for(int i = 0; i < 2 * n; i++){ scanf("%s", str); if(strcmp(str, "Push") == 0){ scanf("%d", &key); node[i] = key; } } // for(int i = 0; i < 2 * n; i++) // printf("%d\n", node[i]); dfs(0); tot = 0; postOrder(0); for(int i = 0; i < n; i++){ if(i) printf(" "); printf("%d", post[i]); } return 0; }