LeetCode 347: 前 K 个高频元素 Top K Frequent Elements

本文介绍了一种高效算法,用于从大型数据集中找出出现频率最高的前K个元素,使用哈希映射进行频率统计,结合优先队列实现动态维护,确保时间复杂度优于O(nlogn),适用于大规模数据处理。

题目:

给定一个非空的整数数组,返回其中出现频率前 K 高的元素。

Given a non-empty array of integers, return the K most frequent elements.

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

说明:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。

  • 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。

Note:

  • You may assume k is always valid, 1 ≤ k ≤ number of unique elements.

  • Your algorithm's time complexity must be better than O(n log n), where n is the array's size.

解题思路:

这道题大致解题步骤是: 频率统计 --> 按频率排序 --> 返回频率最高的前 K 个元素

注意点:

  • 题目要求时间复杂度优于 O(n log n)

首先频率统计最优雅的方法应该是借助哈希映射, key 为元素, value 为频率. 其时间复杂度为 O(n)

排序算法很多不再赘述:


重点是返回前 K 个频率最高的元素, 所以另一种更简单的方法是直接借助 堆(优先队列) 这种数据结构

维护一个 大小为 K 的堆来动态存储前 K 个频率最高的元素, 其时间复杂度为 O(n)

代码:

Java:

class Solution {
    public List<Integer> topKFrequent(int[] nums, int k) {
        // 建立哈希映射
        HashMap<Integer, Integer> count = new HashMap();
        // 频率统计
        for (int n : nums) count.put(n, count.getOrDefault(n, 0) + 1);

        // 建立优先队列, 借助 Lambda 表达式
        PriorityQueue<Integer> heap = new PriorityQueue<Integer>((a, b) -> count.get(a) - count.get(b));
        // 也可以借助 compare 比较函数
        // PriorityQueue<Integer> heap = new PriorityQueue<>(new Comparator<Integer>() {
        //     @Override
        //     public int compare(Integer a, Integer b) {
        //         return map.get(a) - map.get(b);
        //     }
        // });

        // 维护一个大小为 k 的已排序的优先队列
        for (int n : count.keySet()) {
            heap.add(n);
            if (heap.size() > k)
                heap.poll();
        }

        // 返回结果
        List<Integer> top_k = new LinkedList();
        while (!heap.isEmpty())
            top_k.add(heap.poll());
        return top_k;
    }
}

Python:

Python 基础库里的 heapq 堆数据结构, 有两个函数:

  • nlargest

  • nsmallest

例如

heapq.nsmallest(n, nums)

表示取迭代器 nums 前 n 个最大元素, 该函数还能接受一个 key 关键字,以应对复杂的数据结构

结合 collections.Counter() 频率统计函数, 两行代码即可解决

class Solution:
    def topKFrequent(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: List[int]
        """ 
        count = collections.Counter(nums)   
        return heapq.nlargest(k, count.keys(), key=count.get) 

注意体会关键字参数的作用: key=count.get

在充满仪式感的生活里,一款能传递心意的小工具总能带来意外惊喜。这款基于Java开发的满屏飘字弹幕工具,正是为热爱生活、乐于分享的你而来——它以简洁优雅的视觉效果,将治愈系文字化作灵动弹幕,在屏幕上缓缓流淌,既可以作为送给心仪之人的浪漫彩蛋,也能成为日常自娱自乐、舒缓心情的小确幸。 作为程序员献给crush的心意之作,工具的设计藏满了细节巧思。开发者基于Swing框架构建图形界面,实现了无边框全屏显示效果,搭配毛玻璃质感的弹幕窗口与圆润边角设计,让文字呈现既柔和又不突兀。弹幕内容精选了30条治愈系文案,从“秋天的风很温柔”到“你值得所有温柔”,涵盖生活感悟、自我关怀、浪漫告白等多个维度,每一条都能传递温暖力量;同时支持自定义修改文案库,你可以替换成专属情话、纪念文字或趣味梗,让弹幕更具个性化。 在视觉体验上,工具采用柔和色调生成算法,每一条弹幕都拥有独特的清新配色,搭配半透明渐变效果与平滑的移动动画,既不会遮挡屏幕内容,又能营造出灵动治愈的氛围。开发者还优化了弹幕的生成逻辑,支持自定义窗口大小、移动速度、生成间隔等参数,最多可同时显示60条弹幕,且不会造成电脑卡顿;按下任意按键即可快速关闭程序,操作便捷无负担。 对于Java学习者而言,这款工具更是一份优质的实战参考。源码完整展示了Swing图形界面开发、定时器调度、动画绘制、颜色算法等核心技术,注释清晰、结构简洁,哪怕是初学者也能轻松理解。开发者在AI辅助的基础上,反复调试优化细节,解决了透明度控制、弹幕碰撞、资源占用等多个问题,这份“踩坑实录”也为同类项目开发提供了宝贵经验。 无论是想给喜欢的人制造浪漫惊喜,用满屏文字传递心意;还是想在工作间隙用治愈文案舒缓压力,或是作为Java学习的实战案例参考,这款满屏飘字弹幕工具都能满足你的需求。它没有复杂的操作流程,无需额外配置环境,下载即可运行,用最纯粹的设计传递最真挚的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值