Given a matrix
, and a target
, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2
is the set of all cells matrix[x][y]
with x1 <= x <= x2
and y1 <= y <= y2
.
Two submatrices (x1, y1, x2, y2)
and (x1', y1', x2', y2')
are different if they have some coordinate that is different: for example, if x1 != x1'
.
Example 1:
Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Note:
1 <= matrix.length <= 300
1 <= matrix[0].length <= 300
-1000 <= matrix[i] <= 1000
-10^8 <= target <= 10^8
思路:一开始的想法是:求一个二维数组的running sum,然后维护一个set数组,一边遍历一边算“以当前点结尾的情况下贡献了多少结果”,具体如下
class Solution(object):
def numSubmatrixSumTarget(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: int
"""
n,m=len(matrix),len(matrix[0])
run=[[matrix[i][j] for j in range(m)] for i in range(n)]
for i in range(n):
for j in range(m):
if i>0: run[i][j]+=run[i-1][j]
if j>0: run[i][j]+=run[i][j-1]
if i>0 and j>0: run[i][j]-=run[i-1][j-1]
# print(run)
res=0
ds=[{} for _ in range(m)]
for i in range(n):
for j in range(m):
s=run[i][j]
ds[j][s]=ds[j].get(s,0)+1
for j in range(m):
if run[i][j]==0: res+=1
for k in range(j):
res+=ds[k].get(run[i][j],0)
if ds[j][run[i][j]]>1: res+=ds[j][run[i][j]]-1
if matrix[-1][-1]==0: res+=1
return res
s=Solution()
#print(s.numSubmatrixSumTarget(matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0))
#print(s.numSubmatrixSumTarget(matrix = [[1,-1],[-1,1]], target = 0))
print(s.numSubmatrixSumTarget(matrix = [[0,0,0,1,1],[1,1,1,0,1],[1,1,1,1,0],[0,0,0,1,0],[0,0,0,1,1]], target = 0))
但是会WA,因为Sum[ii,jj]-Sum[i,j]并不是[i~ii,j~jj]这个小矩形的sum,就像在求running sum的时候要用容斥原理来求一样
究其WA的原因就是“Sum计算结果错误”,那有没有一种方式能准确计算Sum,然后套用一下上面呢?直观想法是怎么修改Sum的定义,但是如果还是像上面那样“遍历(限定)一个维度(比如遍历每行,分别求出每行作为小矩形底端情况下的结果,然后累加)的话”,是做不到的
所以只能多“套一层循环(多加一些限定)”,即“限制小矩形的起始行和结束行”
class Solution(object):
def numSubmatrixSumTarget(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: int
"""
n,m=len(matrix),len(matrix[0])
run=[[matrix[i][j] for j in range(m)] for i in range(n)]
for i in range(1,n):
for j in range(m):
run[i][j]+=run[i-1][j]
run=[[0]*m]+run
# print(run)
def helper(a):
d={0:1}
s=res=0
for i in range(len(a)):
s+=a[i]
res+=d.get(s-target,0)
d[s]=d.get(s,0)+1
return res
res=0
for i in range(n+1):
for j in range(i+1,n+1):
a=[k2-k1 for k1,k2 in zip(run[i],run[j])]
# print(a)
res+=helper(a)
return res
s=Solution()
print(s.numSubmatrixSumTarget(matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0))
print(s.numSubmatrixSumTarget(matrix = [[1,-1],[-1,1]], target = 0))
print(s.numSubmatrixSumTarget(matrix = [[0,0,0,1,1],[1,1,1,0,1],[1,1,1,1,0],[0,0,0,1,0],[0,0,0,1,1]], target = 0))