multi label loss function

这篇博客探讨了多标签分类问题,建议将问题转化为多个二分类任务。推荐使用tanh+hinge损失、sigmoid+汉明损失或sigmoid+focal损失。特别是在样本标签分布不均匀的情况下,focal loss能有效改进模型性能。作者引用了一篇论文并提供了Kaggle资源链接以供进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本思想还是转化为多个二分类

https://github.com/keras-team/keras/issues/10371

For the multi-label classification, you can try tanh+hinge with {-1, 1} values in labels like (1, -1, -1, 1).
Or sigmoid + hamming loss with {0, 1} values in labels like (1, 0, 0, 1).
In my case, sigmoid + focal loss with {0, 1} values in labels like (1, 0, 0, 1) worked well.
You can check this paper https://arxiv.org/abs/1708.02002.

比如batch为32 sample的,8个多标签输出,可以等价看成32*8个sample的二分类问题,自然这32*8个sample正负样本比很容易不均(如果每个sample只有1,2个标签的话)。这是focal loss就可以发挥很大的作用了

https://www.kaggle.com/rejpalcz/focalloss-for-keras

class FocalLoss(nn.Module):
    def __init__(self, gamma=2):
        super().__init__()
        self.gamma = g
### BP ANN Loss Function Details and Usage In the context of Backpropagation Artificial Neural Networks (BP ANNs), the choice of loss function plays a critical role in guiding how well the network learns from data. The most commonly adopted loss functions include mean squared error (MSE) for regression problems and cross-entropy for classification tasks. For regression scenarios where continuous values are predicted, MSE measures the average squared difference between actual outputs \( y \) and predictions \( \hat{y} \): \[ L_{\text{MSE}} = \frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y}_i)^2 \] This formulation ensures that larger errors contribute more significantly to the total loss than smaller ones, encouraging the model to minimize prediction discrepancies across all samples[^1]. When dealing with classification issues involving discrete labels, binary or categorical cross-entropy serves as an effective alternative: Binary Cross Entropy applies when there are only two classes involved: \[ L_{\text{BCE}}=-\left[y\log(\hat{y})+(1-y)\log(1-\hat{y})\right] \] Categorical Cross Entropy extends this concept to multi-class settings by summing over multiple log probabilities corresponding to each class label: \[ L_{\text{Cat\_CE}}=-\sum_c y_c \cdot \log (\hat{y}_c) \] These loss metrics facilitate efficient gradient computation through backpropagation, allowing adjustments within weights during training phases so as to reduce overall error progressively. ```python import torch.nn.functional as F def compute_loss(output, target, task_type='classification'): if task_type == 'regression': return F.mse_loss(output, target) elif task_type == 'binary_classification': return F.binary_cross_entropy_with_logits(output, target) else: # Multi-class Classification return F.cross_entropy(output, target) # Example usage: output = ... # Model output tensor target = ... # Ground truth tensor loss_value = compute_loss(output, target, task_type='classification') print(f'Loss Value: {loss_value.item()}') ``` The selection of appropriate loss functions depends on specific application requirements and characteristics of datasets being processed. For instance, while MSE works adequately for interval-valued data prediction using regularized artificial neural networks, other types might require different approaches based upon their inherent properties.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值