InvalidArgumentError Traceback (most recent call last)
Cell In[6], line 90
88 # ================= 开始训练 =================
89 print("\n开始GPU加速训练...")
---> 90 bert_history = bert_model.fit(
91 train_ds,
92 validation_data=test_ds,
93 epochs=3,
94 verbose=1,
95 callbacks=[
96 tensorboard_cb,
97 tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2)
98 ]
99 )
101 # ================= 评估模型 =================
102 bert_results = bert_model.evaluate(test_ds)
File D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\modeling_tf_utils.py:1229, in TFPreTrainedModel.fit(self, *args, **kwargs)
1226 @functools.wraps(keras.Model.fit)
1227 def fit(self, *args, **kwargs):
1228 args, kwargs = convert_batch_encoding(*args, **kwargs)
-> 1229 return super().fit(*args, **kwargs)
File D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.__traceback__)
68 # To get the full stack trace, call:
69 # `tf.debugging.disable_traceback_filtering()`
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File D:\Anaconda\envs\pytorch1\lib\site-packages\tensorflow\python\eager\execute.py:53, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
51 try:
52 ctx.ensure_initialized()
---> 53 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
54 inputs, attrs, num_outputs)
55 except core._NotOkStatusException as e:
56 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node 'tf_bert_for_sequence_classification/bert/embeddings/assert_less/Assert/Assert' defined at (most recent call last):
File "D:\Anaconda\envs\pytorch1\lib\threading.py", line 890, in _bootstrap
self._bootstrap_inner()
File "D:\Anaconda\envs\pytorch1\lib\threading.py", line 932, in _bootstrap_inner
self.run()
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\engine\training.py", line 1303, in run_step
outputs = model.train_step(data)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\modeling_tf_utils.py", line 1672, in train_step
y_pred = self(x, training=True)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\engine\training.py", line 569, in __call__
return super().__call__(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\engine\base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\modeling_tf_utils.py", line 1734, in run_call_with_unpacked_inputs
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\models\bert\modeling_tf_bert.py", line 1746, in call
outputs = self.bert(
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\engine\base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\modeling_tf_utils.py", line 1734, in run_call_with_unpacked_inputs
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\models\bert\modeling_tf_bert.py", line 887, in call
embedding_output = self.embeddings(
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\engine\base_layer.py", line 1150, in __call__
outputs = call_fn(inputs, *args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\keras\src\utils\traceback_utils.py", line 96, in error_handler
return fn(*args, **kwargs)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\models\bert\modeling_tf_bert.py", line 180, in call
if input_ids is not None:
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\models\bert\modeling_tf_bert.py", line 181, in call
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
File "D:\Anaconda\envs\pytorch1\lib\site-packages\transformers\tf_utils.py", line 190, in check_embeddings_within_bounds
tf.debugging.assert_less(
Node: 'tf_bert_for_sequence_classification/bert/embeddings/assert_less/Assert/Assert'
assertion failed: [The maximum value of input_ids (Tensor(\"tf_bert_for_sequence_classification/bert/embeddings/Max:0\", shape=(), dtype=int32, device=/job:localhost/replica:0/task:0/device:CPU:0)) must be smaller than the embedding layer\'s input dimension (30522). The likely cause is some problem at tokenization time.] [Condition x < y did not hold element-wise:] [x (cond/Identity_1:0) = ] [[101 2267 4530...]...] [y (tf_bert_for_sequence_classification/bert/embeddings/Cast/x:0) = ] [30522]
[[{{node tf_bert_for_sequence_classification/bert/embeddings/assert_less/Assert/Assert}}]] [Op:__inference_train_function_51172]
最新发布