DFS算法(可能简单的循环也行),注意跳出循环的条件控制
1103. Integer Factorization (30)
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n1^P + ... nK^P
where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62+ 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL
If there is no solution, simple output "Impossible".
Sample Input 1:169 5 2Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2Sample Input 2:
169 167 3Sample Output 2:
Impossible
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
int N, K, P;
int maxN;
vector<int> t;
vector<vector<int> > rst;
int mypow(int base, int exp)
{
int rst = 1;
for(int i=0; i<exp; i++)
rst *= base;
return rst;
}
void dfs(int remain, int depth, int start)
{
if(remain < (K - depth) * mypow(start, P)) return;
if(depth == K) {
if(remain == 0) {
rst.push_back(t);
}
return;
}
for(int i=start; i<=maxN; i++) {
t.push_back(i);
dfs(remain-mypow(i, P), depth+1, i);
t.pop_back();
}
}
int main()
{
cin >> N >> K >> P;
maxN = (int)sqrt((double)N);
dfs(N, 0, 1);
if(!rst.empty()) {
//cout << rst.size() << endl;
//for(int j=0; j<rst.size(); j++) {
int idx = rst.size()-1;
cout << N << " = " << rst[idx][rst[idx].size()-1] << "^" << P;
for(int i=rst[idx].size()-2; i>=0; i--)
cout << " + " << rst[idx][i] << "^" << P;
//cout << rst[idx][] << endl;
//}
} else {
cout << "Impossible";
}
return 0;
}