1238. Circular Permutation in Binary Representation

Given 2 integers n and start. Your task is return any permutation p of (0,1,2.....,2^n -1) such that :

  • p[0] = start
  • p[i] and p[i+1] differ by only one bit in their binary representation.
  • p[0] and p[2^n -1] must also differ by only one bit in their binary representation.

 

Example 1:

Input: n = 2, start = 3
Output: [3,2,0,1]
Explanation: The binary representation of the permutation is (11,10,00,01). 
All the adjacent element differ by one bit. Another valid permutation is [3,1,0,2]

Example 2:

Input: n = 3, start = 2
Output: [2,6,7,5,4,0,1,3]
Explanation: The binary representation of the permutation is (010,110,111,101,100,000,001,011).

 

Constraints:

  • 1 <= n <= 16
  • 0 <= start < 2 ^ n

思路:一看就是格雷码

Gray code is a binary numeral system where two successive values differ in only one bit.

For example, the sequence of Gray codes for 3-bit numbers is: 000, 001, 011, 010, 110, 111, 101, 100, so G(4)=6.

下一位格雷码的计算方式:然后从后往前看,看下更新这位后得到的新数字是否在之前出现过,如果有就一直往前看,

比如起始是000,

把最后一位改掉得到001,没有出现过

然后接下来,001吧最后因为改掉成为000,出现过,所以吧001第二位改掉变成011,没出现过,所以下一个是011

以此类推,然后你可以发现G(n)=n^(n>>1),比如第4位格雷码对应的是4^2=6

 

然后题目的意思其实就是找一个格雷码序列,然后有个start的offset而已

class Solution(object):
    def circularPermutation(self, n, start):
        """
        :type n: int
        :type start: int
        :rtype: List[int]
        """
        res = []
        for i in range(1<<n):
            res.append(start^(i^(i>>1)))
        return res
    
    
s=Solution()
print(s.circularPermutation(2,3))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值