关于人工神经网络的两个想法

学了一段时间神经网络,又看了些讲人脑的书,有两个想法和大家分享,希望有大神能解惑


1、和现在的人工神经网络相比,人的神经间的连接更为复杂,不是全连接或者随机的连接一部分。我觉得人脑神经元的连接是在进化过程中不断演变来的,那么人工神经网络是否也能像人一样,在训练的过程中不断改变神经元的连接(不仅是权值)来优化呢?


2、人脑突触间的传播需要时间,而且各不相同,我觉得这形成的整个信息流的先后顺序很可能非常重要,人工神经网络最多加一层承接层来记忆上一次的输入,每个神经元的传播时延被忽略掉了,有没有一种网络除了权值,还有传播时延这个变量,并且在每次的训练中修改它,以达到最优呢?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值