第十二周 项目4-利用遍历思想求解图问题(2)

本文介绍了如何使用遍历思想解决图中的路径问题,提供了一个C++代码示例,展示了从顶点u到v找到简单路径的方法。通过邻接表存储的图,算法能够输出一条路径,并在实际运行中展示结果。文章还强调了图遍历思想在解决此类问题中的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/* 
 *Copyright(c) 2015, 烟台大学计算机学院 
 *All rights reserved. 
 *文件名称:利用遍历思想求解图问题(2).cpp 
 *作    者:周洁 
 *完成日期:2015年 11月23日 
 *版 本 号: 
 * 

 *问题描述:假设图G采用邻接表存储,设计一个算法输出图G中从顶点u到v的一条简单路径(假设图G中从顶点u到v至少有一条简单路径)。

 
 *输入描述: 若干数据

 *程序输出:从顶点u到v的一条简单路径

*/

代码:

(1)头文件:图基本算法

(2)源文件:

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组


void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}



void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
    //d表示path中的路径长度,初始为-1
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;  //路径长度d增1,顶点u加入到路径中
    if (u==v)   //找到一条路径后输出并返回
    {
        printf("一条简单路径为:");
        for (i=0; i<=d; i++)
            printf("%d ",path[i]);
        printf("\n");
        return;         //找到一条路径后返回
    }
    p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点
    while (p!=NULL)
    {
        w=p->adjvex;    //相邻点的编号为w
        if (visited[w]==0)
            FindAPath(G,w,v,path,d);
        p=p->nextarc;   //p指向顶点u的下一个相邻点
    }
}

void APath(ALGraph *G,int u,int v)
{
    int i;
    int path[MAXV];
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0
}

int main()
{

    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    APath(G, 1, 0);
    APath(G, 4, 1);
    return 0;
}


运行结果:

知识点总结:图遍历思想的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值