/*
*Copyright(c) 2015, 烟台大学计算机学院
*All rights reserved.
*文件名称:利用遍历思想求解图问题(2).cpp
*作 者:周洁
*完成日期:2015年 11月23日
*版 本 号:
*
*问题描述:假设图G采用邻接表存储,设计一个算法输出图G中从顶点u到v的一条简单路径(假设图G中从顶点u到v至少有一条简单路径)。
*输入描述: 若干数据
*程序输出:从顶点u到v的一条简单路径
*/
代码:
(1)头文件:图基本算法
(2)源文件:
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV]; //定义存放节点的访问标志的全局数组
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
//d表示path中的路径长度,初始为-1
int w,i;
ArcNode *p;
visited[u]=1;
d++;
path[d]=u; //路径长度d增1,顶点u加入到路径中
if (u==v) //找到一条路径后输出并返回
{
printf("一条简单路径为:");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
return; //找到一条路径后返回
}
p=G->adjlist[u].firstarc; //p指向顶点u的第一个相邻点
while (p!=NULL)
{
w=p->adjvex; //相邻点的编号为w
if (visited[w]==0)
FindAPath(G,w,v,path,d);
p=p->nextarc; //p指向顶点u的下一个相邻点
}
}
void APath(ALGraph *G,int u,int v)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
FindAPath(G,u,v,path,-1); //d初值为-1,调用时d++,即变成了0
}
int main()
{
ALGraph *G;
int A[5][5]=
{
{0,0,0,0,0},
{0,0,1,0,0},
{0,0,0,1,1},
{0,0,0,0,0},
{1,0,0,1,0},
}; //请画出对应的有向图
ArrayToList(A[0], 5, G);
APath(G, 1, 0);
APath(G, 4, 1);
return 0;
}
运行结果:
知识点总结:图遍历思想的应用