图像检索系列一:Deep Learning of Binary Hash Codes for Fast Image Retrieval

Deep Learning of Binary Hash Codes for Fast Image Retrieval 这篇文章发表在2015CVPR workshop

文章链接:http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W03/papers/Lin_Deep_Learning_of_2015_CVPR_paper.pdf

代码链接:https://github.com/kevinlin311tw/caffe-cvprw15


图一 算法框架流程

这篇文章的想法很巧妙,在一个深层CNN的最后一个全连接层(fc8)和倒数第二个全连接层(fc7)之间加了一层全连接隐层,就是图一中绿色的latent layer (H)。这样一来,既可以得到深层的CNN特征,文中主要用的是fc7的特征,还可以得到二分的哈希编码,即来自H。这个隐层H不仅是对fc7的一个特征概括,而且是一个连接CNN网络的中层特征与高层特征的桥梁。

1. Domain Adaption

为了让一个网络能够对某一类物体高鲁棒,即targ

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值