1,tensorboard。详见https://github.com/tensorflow/tensorboard/blob/master/README.md。
2,plot_model,对应python3。plot,对应python2。
3,按步骤安装graphviz,pydot,pydot-ng。
4,graphviz的安装详见https://blog.youkuaiyun.com/qq_35603331/article/details/81591949,适用于win,msi文件链接https://graphviz.gitlab.io/_pages/Download/Download_windows.html。
5,pydot,pydot-ng对应版本以及安装详见https://blog.youkuaiyun.com/lyb3b3b/article/details/74495002。
6,神经网络图例测试详见https://www.jianshu.com/p/56a05b5e4f20。
7,代码和测试结果如下所示。
from keras.layers import Input, Convolution2D, Flatten, Dense, Activation
from keras.models import Sequential
from keras.optimizers import SGD , Adam
from keras.utils import plot_model
# apply a 3x3 convolution with 64 output filters on a 256x256 image:
model = Sequential()
model.add(Convolution2D(64, 3, 3, border_mode='same', dim_ordering='th',input_shape=(3, 256, 256)))
# now model.output_shape == (None, 64, 256, 256)
# add a 3x3 convolution on top, with 32 output filters:
model.add(Convolution2D(32, 3, 3, border_mode='same', dim_ordering='th'))
# now model.output_shape == (None, 32, 256, 256)
adam = Adam(lr=1e-6)
model.compile(loss='mse',optimizer=adam)
print("We finish building the model")
plot(model, to_file='model1.png', show_shapes=True)