numpy.stack()
•numpy.stack(arrays, axis = 0, out = None) 沿新轴连接一系列数组
array01=np.array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
array02 = np.arange(24,48).reshape(4,6)
array02
# 结果
array([[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41],
[42, 43, 44, 45, 46, 47]])
# 拼接行
np.stack((array01,array02))
# 结果
array([[[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]],
[[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41],
[42, 43, 44, 45, 46, 47]]])
# 拼接列
np.stack((array01,array02),axis=1)
# 结果
array([[[ 0, 1, 2, 3, 4, 5],
[24, 25, 26, 27, 28, 29]],
[[ 6, 7, 8, 9, 10, 11],
[30, 31, 32, 33, 34, 35]],
[[12, 13, 14, 15, 16, 17],
[36, 37, 38, 39, 40, 41]],
[[18, 19, 20, 21, 22, 23],
[42, 43, 44, 45, 46, 47]]])
总结
np.stack()和np.row_stack()、np.column_stack()是不一样的。
np.row_stack((array01,array02))
# 结果
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41],
[42, 43, 44, 45, 46, 47]])
np.stack()形成是三维数组。
np.row_stack()形成的是二维数组,行拼接在一起
np.column_stack((array01,array02))
# 结果
array([[ 0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29],
[ 6, 7, 8, 9, 10, 11, 30, 31, 32, 33, 34, 35],
[12, 13, 14, 15, 16, 17, 36, 37, 38, 39, 40, 41],
[18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47]])
np.stack()形成是三维数组,两个数组的行交叉在一起。
np.column_stack()形成的是二维数组,列拼接在一起。
再看 np.concatenate()
np.concatenate((array01,array02))
# 结果
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41],
[42, 43, 44, 45, 46, 47]])
np.concatenate((array01,array02),axis=1)
# 结果
array([[ 0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29],
[ 6, 7, 8, 9, 10, 11, 30, 31, 32, 33, 34, 35],
[12, 13, 14, 15, 16, 17, 36, 37, 38, 39, 40, 41],
[18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47]])
再看 np.vstack()和np.hstack()。
np.vstack((array01,array02))
# 结果
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41],
[42, 43, 44, 45, 46, 47]])
np.hstack((array01,array02))
# 结果
array([[ 0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29],
[ 6, 7, 8, 9, 10, 11, 30, 31, 32, 33, 34, 35],
[12, 13, 14, 15, 16, 17, 36, 37, 38, 39, 40, 41],
[18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47]])
由此可见,np.concatenate()和np.row_stack()、np.vstack()的效果一样。
np.concatenate(,axis=1)和np.column_stack()、np.hstack()的效果一样。
这篇博客详细介绍了numpy中的数组操作函数,包括np.stack()、np.row_stack()、np.column_stack()和np.concatenate()。通过实例展示了它们在拼接数组时的不同效果。np.stack()创建三维数组,而np.row_stack()和np.concatenate()在默认情况下进行行拼接,生成二维数组;当axis设置为1时,np.concatenate()与np.column_stack()则进行列拼接。这些函数在数组连接时提供了灵活的选择。
269





