【NOIP2013模拟联考10】独立集(bubble)题解

Description

有一天,一个名叫顺旺基的程序员从石头里诞生了。又有一天,他学会了冒泡排序和独立集。在一个图里,独立集就是一个点集,满足任意两个点之间没有边。于是他就想把这两个东西结合在一起。众所周知,独立集是需要一个图的。那么顺旺基同学创造了一个算法,从冒泡排序中产生一个无向图。

这个算法不标准的伪代码如下:
procedure bubblesortgraph(n, a[]) :

                 /*输入:点数n,1到n的全排列a。

                   输出:一个点数为n的无向图G。*/

              创建一个有n个点,0条边的无向图G。

               repeat

                    swapped = false

                    for i 从 1 到 n-1 :

                          if a[i] > a[i + 1] :

                                在G中连接点a[i]和点a[i + 1]

                                交换a[i]和a[i + 1]

                                swapped = true

               until not swapped

               输出图G。

                //结束。

那么我们要算出这个无向图G最大独立集的大小。但是事情不止于此。顺旺基同学有时候心情会不爽,这个时候他就会要求你再回答多一个问题:最大独立集可能不是唯一的,但有些点是一定要选的,问哪些点一定会在最大独立集里。今天恰好他不爽,被他问到的同学就求助于你了。

Input

两行。第一行为N,第二行为1到N的一个全排列。

Output

两行。第一行输出最大独立集的大小,第二行从小到大输出一定在最大独立集的点的编号(输入时的序号)。

Sample Input

3

3 1 2

Sample Output

2

2 3

Data Constraint

30%的数据满足 N<=16

60%的数据满足 N<=1,000

100%的数据满足 N<=100,000

思路:

最长不下降子序列及输出序列(铺垫,必学)

对于两个点i<j若a[i]<=a[j]则i,j可以在同一个独立集
所以最大的独立集应该为a的最长不下降子序列长度

引用一下OJ题解,于是配上铺垫我们只有一个疑问,如何输出一定在最大独立集的点的编号 ???

如何求一定在序列中的点呢?
把a反过来做一次最长下降子序列,两个序列取交集即可

代码:

#include<bits/stdc++.h>
#define rg register
#define max(a,b) a>b?a:b
#define Fu(i,a,b) for(int i=(a);i<=(b);i++)
#define Fd(i,a,b) for(int i=(a);i>=(b);i--)
#define fre(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout)
using namespace std;
int read(){
   
   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值