Leetcode:239. Sliding Window Maximum

本文介绍了一种解决滑动窗口最大值问题的高效算法。通过使用双端队列维护当前窗口内元素的最大值,算法能在O(n)的时间复杂度内求解。示例输入为数组[1,3,-1,-3,5,3,6,7]及窗口大小3,输出为[3,3,5,5,6,7]。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.

Example:

Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
Output: [3,3,5,5,6,7]
Explanation:

Window position Max


[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7

Note:
You may assume k is always valid, 1 ≤ k ≤ input array’s size for non-empty array.

public int[] maxSlidingWindow(int[] nums, int k) {
        if(nums==null || nums.length ==0 || k==0) {
            return new int[0];
        }
        Deque<Integer> window = new LinkedList<Integer>();
        int[] result = new int[nums.length > k ? nums.length - k + 1 : 1];
        int h = nums.length > k ? k : nums.length;
        int i = 0;
        for(int j=0;j<nums.length;j++){
            while(!window.isEmpty() && nums[window.getLast()]<nums[j]) {
                window.removeLast();
            }
            window.addLast(j);
            if(j-window.getFirst()>=k){
                window.removeFirst();
            }
            if(j>=h-1) {
                result[i++] = nums[window.getFirst()];
            }
        }
        return result;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值