概述
在之前的风资源分析文章中,有提到过用widrose包来进行玫瑰图的绘制,目前的可视化绘图包有很多,但是最基础和底层的,本人认为还是matplotlib,有时候为了画1-2个图就去安装一个包,好麻烦,我就是个安装软件的渣渣,所以,推己及人,我也研究了一下,matplotlib画玫瑰图的方法,废话不多说,开始咯~~~
风能玫瑰图
玫瑰图是气象科学专业统计图表,用来统计某个地区一段时期内风向、风速发生频率,又分为“风向玫瑰图”和“风速玫瑰图”。本文中的玫瑰图是将风速和风向结合在一起,画出的风能玫瑰图。
读取数据
读取对应的测风数据,并进行数据的基本计算,在matplotlib中画图中没有集成的计算包,所以一定要充分了解绘制玫瑰图的原理,将数据通过计算来处理成绘图需要的形式,再进行调用绘图。
**1、读取数据,**并提取出绘图的风速风向数据,此时的数据是原始风速风向数据。
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文
plt.rcParams['axes.unicode_minus']=False #显示负号
filename=r'E:\python总结\实例数据\matplotlib画玫瑰图\Sta_WLS7-4880-0420-0728.xlsx'
datat=pd.read_excel(filename,sheet_name='原始数据')
datat.columns
# 提取绘图的风速风向数据,并进行简单的删除空值处理
dt=datat.loc[:,('90m Wind Speed (m/s)','90m Wind Direction (�)')] #提取90m高度的风速和风向
dt=dt.dropna() #删除空值
2、进行绘图前的数据计算。
mx=np.ceil(max(dt['90m Wind Speed (m/s)'])) #风速最大值向上取整
ct0=np.array(np.arange(0,361,22.5)) #划分风向的区间,22.5度一个区间
ct1=np