OpenCV中提供了HOG的行人检测(pedestrain detection)类。
cv::HOGDescriptor类的构造函数的各参数的定义:
- CV_WRAP HOGDescriptor() :
- winSize(64,128),
- blockSize(16,16),
- blockStride(8,8),
- cellSize(8,8),
- nbins(9),
- derivAperture(1),
- winSigma(-1),
- histogramNormType(HOGDescriptor::L2Hys),
- L2HysThreshold(0.2),
- gammaCorrection(true),
- nlevels(HOGDescriptor::DEFAULT_NLEVELS)
下面的两段代码采用OpenCV中的HOG行人检测类来完成对静态图片中的行人检测。
1)采用64*128 (像素为单位)的detect window
-
-
-
-
- #include <iostream>
- #include <opencv2/opencv.hpp>
-
-
- int main(int argc, char** argv)
- {
- cv::Mat image = cv::imread("test.bmp");
- if (image.empty())
- {
- std::cout<<"read image failed"<<std::endl;
- }
-
-
-
- cv::HOGDescriptor hog;
-
-
-
- hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());
-
-
- std::vector<cv::Rect> regions;
- hog.detectMultiScale(image, regions, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 1);
-
-
- for (size_t i = 0; i < regions.size(); i++)
- {
- cv::rectangle(image, regions[i], cv::Scalar(0,0,255), 2);
- }
-
- cv::imshow("hog", image);
- cv::waitKey(0);
-
- return 0;
- }
行人检测实验结果:

2)采用48*96(像素为单位)的detect window
-
-
-
- #include <iostream>
- #include <opencv2/opencv.hpp>
-
-
- int main(int argc, char** argv)
- {
- cv::Mat image = cv::imread("test.bmp");
- if (image.empty())
- {
- std::cout<<"read image failed"<<std::endl;
- }
-
-
-
- cv::HOGDescriptor hog(cv::Size(48, 96), cv::Size(16, 16), cv::Size(8, 8), cv::Size(8, 8), 9, 1,-1, cv::HOGDescriptor::L2Hys, 0.2, true, cv::HOGDescriptor::DEFAULT_NLEVELS);
-
-
-
- hog.setSVMDetector(cv::HOGDescriptor::getDaimlerPeopleDetector());
-
-
- std::vector<cv::Rect> regions;
- hog.detectMultiScale(image, regions, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 1);
-
-
- for (size_t i = 0; i < regions.size(); i++)
- {
- cv::rectangle(image, regions[i], cv::Scalar(0,0,255), 2);
- }
-
- cv::imshow("hog", image);
- cv::waitKey(0);
-
- return 0;
- }
行人检测实验结果:

相关内容:www.icvpr.com
--------------------------------------------------------
< 转载请注明:http://blog.youkuaiyun.com/icvpr >
OpenCV中提供了HOG的行人检测(pedestrain detection)类。
cv::HOGDescriptor类的构造函数的各参数的定义:
- CV_WRAP HOGDescriptor() :
- winSize(64,128),
- blockSize(16,16),
- blockStride(8,8),
- cellSize(8,8),
- nbins(9),
- derivAperture(1),
- winSigma(-1),
- histogramNormType(HOGDescriptor::L2Hys),
- L2HysThreshold(0.2),
- gammaCorrection(true),
- nlevels(HOGDescriptor::DEFAULT_NLEVELS)
下面的两段代码采用OpenCV中的HOG行人检测类来完成对静态图片中的行人检测。
1)采用64*128 (像素为单位)的detect window
-
-
-
-
- #include <iostream>
- #include <opencv2/opencv.hpp>
-
-
- int main(int argc, char** argv)
- {
- cv::Mat image = cv::imread("test.bmp");
- if (image.empty())
- {
- std::cout<<"read image failed"<<std::endl;
- }
-
-
-
- cv::HOGDescriptor hog;
-
-
-
- hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());
-
-
- std::vector<cv::Rect> regions;
- hog.detectMultiScale(image, regions, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 1);
-
-
- for (size_t i = 0; i < regions.size(); i++)
- {
- cv::rectangle(image, regions[i], cv::Scalar(0,0,255), 2);
- }
-
- cv::imshow("hog", image);
- cv::waitKey(0);
-
- return 0;
- }
行人检测实验结果:

2)采用48*96(像素为单位)的detect window
-
-
-
- #include <iostream>
- #include <opencv2/opencv.hpp>
-
-
- int main(int argc, char** argv)
- {
- cv::Mat image = cv::imread("test.bmp");
- if (image.empty())
- {
- std::cout<<"read image failed"<<std::endl;
- }
-
-
-
- cv::HOGDescriptor hog(cv::Size(48, 96), cv::Size(16, 16), cv::Size(8, 8), cv::Size(8, 8), 9, 1,-1, cv::HOGDescriptor::L2Hys, 0.2, true, cv::HOGDescriptor::DEFAULT_NLEVELS);
-
-
-
- hog.setSVMDetector(cv::HOGDescriptor::getDaimlerPeopleDetector());
-
-
- std::vector<cv::Rect> regions;
- hog.detectMultiScale(image, regions, 0, cv::Size(8,8), cv::Size(32,32), 1.05, 1);
-
-
- for (size_t i = 0; i < regions.size(); i++)
- {
- cv::rectangle(image, regions[i], cv::Scalar(0,0,255), 2);
- }
-
- cv::imshow("hog", image);
- cv::waitKey(0);
-
- return 0;
- }
行人检测实验结果:

相关内容:www.icvpr.com
--------------------------------------------------------
< 转载请注明:http://blog.youkuaiyun.com/icvpr >