core配置设备使用的是message.c里的usb_set_configuration函数
先看第一阶段,9行,configuration是前边儿choose_configuration()那里返回回来的,找到合意的配置的话,就返回那个配置的bConfigurationValue值,没有找到称心的配置的话,就返回-1,所以这里的configuration值就可能有两种情况,或者为-1,或者为配置的bConfigurationValue值。当configuration为-1时这里为啥又要把它改为0捏?要知道configuration这个值是要在后面的阶段里发送SET_CONFIGURATION请求时用的,关于SET_CONFIGURATION请求,spec里说,这个值必须为0或者与配置描述符的bConfigurationValue一致,如果为0,则设备收到SET_CONFIGURATION请求后,仍然会待在Address状态。这里当configuration为-1也就是没有发现满意的配置时,设备不能进入Configured,所以要把configuration的值改为0,以便满足SET_CONFIGURATION请求的要求。
那接下来的问题就出来了,在没有找到合适配置的时候直接给configuration这个参数传个0,也就是让choose_configuration()返回个0不就得了,干吗还这么麻烦先返回个-1再把它改成0,不是脱裤子放屁多此一举么?你别愤怒,这归根结底还是那句话,林子大了什么鸟都有,有些设备就是有拿0当配置bConfigurationValue值的毛病,你又不能不让它用。usb世界里出现几个有毛病的设备也没啥大不了的,这里妥协一下就是了,想让设备回到Address状态时,usb_set_configuration()就别传递0了,传递个-1,里边儿去处理一下。如果configuration值为0或大于0的值,就从设备struct usb_device结构体的config数组里将相应配置的描述信息,也就是struct usb_host_config结构体给取出来。
20行,如果没有拿到配置的内容,configuration值就必须为0了,让设备待在Address那儿别动。这也很好理解,配置的内容都找不到了,还配置个什么劲儿。当然,如果拿到了配置的内容,但同时configuration为0,这就是对应了上面说的那种有毛病的设备的情况,就提出一下警告,告诉你不正常现象出现了。
33行,过了这个if,第一阶段就告结束了。如果配置是实实在在存在的,就为它使用的那些接口都准备一个struct usb_interface结构体。new_interfaces是开头儿就定义好的一个struct usb_interface结构体指针数组,数组的每一项都指向了一个struct usb_interface结构体,所以这里申请内存也要分两步走,先申请指针数组的,再申请每一项的。
int usb_set_configuration(struct usb_device *dev, int configuration)
{
int i, ret;
struct usb_host_config *cp = NULL;
struct usb_interface **new_interfaces = NULL;
struct usb_hcd *hcd = bus_to_hcd(dev->bus);
int n, nintf;
if (dev->authorized == 0 || configuration == -1)
configuration = 0;
else {
for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
if (dev->config[i].desc.bConfigurationValue ==
configuration) {
cp = &dev->config[i];
break;
}
}
}
if ((!cp && configuration != 0))
return -EINVAL;
/* The USB spec says configuration 0 means unconfigured.
* But if a device includes a configuration numbered 0,
* we will accept it as a correctly configured state.
* Use -1 if you really want to unconfigure the device.
*/
if (cp && configuration == 0)
dev_warn(&dev->dev, "config 0 descriptor??\n");
/* Allocate memory for new interfaces before doing anything else,
* so that if we run out then nothing will have changed. */
n = nintf = 0;
if (cp) {
nintf = cp->desc.bNumInterfaces;
new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
GFP_NOIO);
if (!new_interfaces) {
dev_err(&dev->dev, "Out of memory\n");
return -ENOMEM;
}
for (; n < nintf; ++n) {
new_interfaces[n] = kzalloc(
sizeof(struct usb_interface),
GFP_NOIO);
if (!new_interfaces[n]) {
dev_err(&dev->dev, "Out of memory\n");
ret = -ENOMEM;
free_interfaces:
while (--n >= 0)
kfree(new_interfaces[n]);
kfree(new_interfaces);
return ret;
}
}
i = dev->bus_mA - usb_get_max_power(dev, cp);
if (i < 0)
dev_warn(&dev->dev, "new config #%d exceeds power "
"limit by %dmA\n",
configuration, -i);
}
/* Wake up the device so we can send it the Set-Config request */
ret = usb_autoresume_device(dev);
if (ret)
goto free_interfaces;
/* if it's already configured, clear out old state first.
* getting rid of old interfaces means unbinding their drivers.
*/
if (dev->state != USB_STATE_ADDRESS)
usb_disable_device(dev, 1); /* Skip ep0 */
/* Get rid of pending async Set-Config requests for this device */
cancel_async_set_config(dev);
/* Make sure we have bandwidth (and available HCD resources) for this
* configuration. Remove endpoints from the schedule if we're dropping
* this configuration to set configuration 0. After this point, the
* host controller will not allow submissions to dropped endpoints. If
* this call fails, the device state is unchanged.
*/
mutex_lock(hcd->bandwidth_mutex);
/* Disable LPM, and re-enable it once the new configuration is
* installed, so that the xHCI driver can recalculate the U1/U2
* timeouts.
*/
if (dev->actconfig && usb_disable_lpm(dev)) {
dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
mutex_unlock(hcd->bandwidth_mutex);
ret = -ENOMEM;
goto free_interfaces;
}
ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
if (ret < 0) {
if (dev->actconfig)
usb_enable_lpm(dev);
mutex_unlock(hcd->bandwidth_mutex);
usb_autosuspend_device(dev);
goto free_interfaces;
}
/*
* Initialize the new interface structures and the
* hc/hcd/usbcore interface/endpoint state.
*/
for (i = 0; i < nintf; ++i) {
struct usb_interface_cache *intfc;
struct usb_interface *intf;
struct usb_host_interface *alt;
cp->interface[i] = intf = new_interfaces[i];
intfc = cp->intf_cache[i];
intf->altsetting = intfc->altsetting;
intf->num_altsetting = intfc->num_altsetting;
kref_get(&intfc->ref);
alt = usb_altnum_to_altsetting(intf, 0);
/* No altsetting 0? We'll assume the first altsetting.
* We could use a GetInterface call, but if a device is
* so non-compliant that it doesn't have altsetting 0
* then I wouldn't trust its reply anyway.
*/
if (!alt)
alt = &intf->altsetting[0];
intf->intf_assoc =
find_iad(dev, cp, alt->desc.bInterfaceNumber);
intf->cur_altsetting = alt;
usb_enable_interface(dev, intf, true);
intf->dev.parent = &dev->dev;
intf->dev.driver = NULL;
intf->dev.bus = &usb_bus_type;
intf->dev.type = &usb_if_device_type;
intf->dev.groups = usb_interface_groups;
intf->dev.dma_mask = dev->dev.dma_mask;
INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
intf->minor = -1;
device_initialize(&intf->dev);
pm_runtime_no_callbacks(&intf->dev);
dev_set_name(&intf->dev, "%d-%s:%d.%d",
dev->bus->busnum, dev->devpath,
configuration, alt->desc.bInterfaceNumber);
}
kfree(new_interfaces);
ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
NULL, 0, USB_CTRL_SET_TIMEOUT);
if (ret < 0 && cp) {
/*
* All the old state is gone, so what else can we do?
* The device is probably useless now anyway.
*/
usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
for (i = 0; i < nintf; ++i) {
usb_disable_interface(dev, cp->interface[i], true);
put_device(&cp->interface[i]->dev);
cp->interface[i] = NULL;
}
cp = NULL;
}
dev->actconfig = cp;
mutex_unlock(hcd->bandwidth_mutex);
if (!cp) {
usb_set_device_state(dev, USB_STATE_ADDRESS);
/* Leave LPM disabled while the device is unconfigured. */
usb_autosuspend_device(dev);
return ret;
}
usb_set_device_state(dev, USB_STATE_CONFIGURED);
if (cp->string == NULL &&
!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
/* Now that the interfaces are installed, re-enable LPM. */
usb_unlocked_enable_lpm(dev);
/* Enable LTM if it was turned off by usb_disable_device. */
usb_enable_ltm(dev);
/* Now that all the interfaces are set up, register them
* to trigger binding of drivers to interfaces. probe()
* routines may install different altsettings and may
* claim() any interfaces not yet bound. Many class drivers
* need that: CDC, audio, video, etc.
*/
for (i = 0; i < nintf; ++i) {
struct usb_interface *intf = cp->interface[i];
dev_dbg(&dev->dev,
"adding %s (config #%d, interface %d)\n",
dev_name(&intf->dev), configuration,
intf->cur_altsetting->desc.bInterfaceNumber);
device_enable_async_suspend(&intf->dev);
ret = device_add(&intf->dev);
if (ret != 0) {
dev_err(&dev->dev, "device_add(%s) --> %d\n",
dev_name(&intf->dev), ret);
continue;
}
create_intf_ep_devs(intf);
}
usb_autosuspend_device(dev);
return 0;
}
说代码前咱们再聊点这个函数背后的人生哲学,你设备不是和usb_generic_driver这个大美女配对成功了么,可是要想保持和她的这种亲密关系,你就得准备着让她去配置,准备着她想让你什么样你就什么样。这个函数就可以泾渭分明的分成三个部分三个阶段,从3到63的这几十行是准备阶段,做做常规检查啊,申请申请内存什么的。70到177这部分可是重头戏,就是在这里设备从Address发展到了Configured,可算是高潮阶段。194到209这阶段也挺重要的,主要就是充实充实设备的每个接口并提交给设备模型,为它们寻找命中注定的接口驱动,usb_generic_driver也就彻底从你设备那儿得到满足了,generic_probe的历史使命也就完成了。
先看第一阶段,9行,configuration是前边儿choose_configuration()那里返回回来的,找到合意的配置的话,就返回那个配置的bConfigurationValue值,没有找到称心的配置的话,就返回-1,所以这里的configuration值就可能有两种情况,或者为-1,或者为配置的bConfigurationValue值。当configuration为-1时这里为啥又要把它改为0捏?要知道configuration这个值是要在后面的阶段里发送SET_CONFIGURATION请求时用的,关于SET_CONFIGURATION请求,spec里说,这个值必须为0或者与配置描述符的bConfigurationValue一致,如果为0,则设备收到SET_CONFIGURATION请求后,仍然会待在Address状态。这里当configuration为-1也就是没有发现满意的配置时,设备不能进入Configured,所以要把configuration的值改为0,以便满足SET_CONFIGURATION请求的要求。
那接下来的问题就出来了,在没有找到合适配置的时候直接给configuration这个参数传个0,也就是让choose_configuration()返回个0不就得了,干吗还这么麻烦先返回个-1再把它改成0,不是脱裤子放屁多此一举么?你别愤怒,这归根结底还是那句话,林子大了什么鸟都有,有些设备就是有拿0当配置bConfigurationValue值的毛病,你又不能不让它用。usb世界里出现几个有毛病的设备也没啥大不了的,这里妥协一下就是了,想让设备回到Address状态时,usb_set_configuration()就别传递0了,传递个-1,里边儿去处理一下。如果configuration值为0或大于0的值,就从设备struct usb_device结构体的config数组里将相应配置的描述信息,也就是struct usb_host_config结构体给取出来。
20行,如果没有拿到配置的内容,configuration值就必须为0了,让设备待在Address那儿别动。这也很好理解,配置的内容都找不到了,还配置个什么劲儿。当然,如果拿到了配置的内容,但同时configuration为0,这就是对应了上面说的那种有毛病的设备的情况,就提出一下警告,告诉你不正常现象出现了。
33行,过了这个if,第一阶段就告结束了。如果配置是实实在在存在的,就为它使用的那些接口都准备一个struct usb_interface结构体。new_interfaces是开头儿就定义好的一个struct usb_interface结构体指针数组,数组的每一项都指向了一个struct usb_interface结构体,所以这里申请内存也要分两步走,先申请指针数组的,再申请每一项的。