hadoop面试常用问答

本文深入探讨了Hadoop面试中可能出现的问题,包括其运行原理、MapReduce原理、HDFS存储机制等,并通过一个具体例子展示了如何利用MapReduce解决实际问题。同时解释了Combiner的作用及其在提升job速度方面的适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试hadoop可能被问到的问题,你能回答出几个 ?

1、hadoop运行的原理?

2、mapreduce的原理?

3、HDFS存储的机制?

4、举一个简单的例子说明mapreduce是怎么来运行的 ?

5、面试的人给你出一些问题,让你用mapreduce来实现?

      比如:现在有10个文件夹,每个文件夹都有1000000个url.现在让你找出top1000000url。

6、hadoop中Combiner的作用?


一、作用
1、combiner最基本是实现本地key的聚合,对map输出的key进行排序,value进行迭代。如下所示:
map: (K1, V1) → list(K2, V2) 
combine: (K2, list(V2)) → list(K2, V2) 
reduce: (K2, list(V2)) → list(K3, V3)

2、combiner还具有类似本地的reduce功能.
例如hadoop自带的wordcount的例子和找出value的最大值的程序,combiner和reduce完全一致。如下所示:
map: (K1, V1) → list(K2, V2) 
combine: (K2, list(V2)) → list(K3, V3) ,减轻reduce的负担!reduce: (K3, list(V3)) → list(K4, V4) 

3、如果不用combiner,那么,所有的结果都是reduce完成,效率会相对低下。使用combiner,先完成的map会在本地聚合,提升速度。

举一个hadoop自带的wordcount例子说明。
value就是一个叠加的数字,所以map一结束就可以进行reduce的value叠加,而不必要等到所有的map结束再去进行reduce的value叠加。

二、总结
1、combiner使用的合适,可以在满足业务的情况下提升job的速度,如果不合适,则将导致输出的结果不正确,上面7楼说的很对,不是所有的场合都适合combiner。根据自己的业务来使用。、


、hadoop就是map 和 reduce的过程。服务器上一个目录节点+多个数据节点。将程序传送到各个节点,在数据节点上进行计算
2、将数据存储到不同节点,用map方式对应管理,在各个节点进行计算,采用reduce进行合并结果集
3、就是通过java程序和目录节点配合,将数据存放到不同数据节点上
4、看上边的2.注意,分布式注重的是计算,不是每个场景都适合
5、将文件存放到不同的数据节点,然后每个节点计算出前十个进行reduce的计算
6、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值