Need to confirm

本文介绍如何将Visual FoxPro (VFP)程序编译成独立的可执行文件,并详细解释了创建安装包的过程,以便在没有VFP的计算机上运行。
我用VFP做了个程序,但非要有VFP的地方才能运行,请问各位高手,要如何才能把它做成一个可以直接运行的程序呢????还有就是VFP的主程序是什么东东?要怎么去写啊?
---------------------------------------------------------------

新建一个项目,把你的表单、报表、程序之类反正你编的东西都加进去,
如果你运行的是一个程序的话,直接把它设为主程序,
否则新建一个主程序,
格式参考如下:
do form forms/kl  *你首先运行的表单,如果是其它的,自己改一下
on shutdown quit
read event
---------------------------------------------------------------

如果您的程序全部都编好了就可以开始编译您的软件了,很简单,方法如下: 1.按下项目管理器中的连编,出现对话框;
     2.选择“连编可执行程序”,确定;
     3.输入编译后的EXE文件名,注意目录,然后保存;
  接着系统便进入编译过程,这一过程是电脑自动完成的。在这一过程中系统会首先检查您的程序是否有错误,如有错误有时会给出提示,在提示中您一般可以选择“忽略”、“全部忽略”、“取消”,这里的“忽略”就是不管出现的错误继续编译,当然一般不应该这样,一旦出现错误提示应选择取消,然后找出相应的错误,改正后再编译。为了容易查找错误,系统还将错误记录下来,在菜单的“项目”-“错误”中可以看到,其中会讲明是什么错误,发生在哪个程序的哪一条语句中。对于有些错误会不给出提示而直接忽略,但它仍然会把错误记录下来。
  如果系统编译时没有记录错误,那是因为在菜单上的“工具”-“选项”-“常规”-“编程”中的“记录编译错误”没有打开。
 
  VFP编译生成的EXE文件是不能直接在另一台电脑上运行的,除非该电脑中已经装有VFP系统,因为EXE文件的运行要依赖于安装在WINDOWS系统中的运行时的库。为此要为该软件制作一套安装盘,方法如下:
  在您开发的软件的目录下建一个子目录,比如叫exe,当然您也可以建在别什么地方或叫别的什么名字;
  将该软件所要用到的数据库(dbc)、数据库备注(dct)、数据库索引(dcx)、表(dbf)、表索引(cdx、idx)、表备注(fpt)、内存变量文件(mem)等等,再就是编译后的exe文件通通复制到上面所建的目录中,然后将复制过去的数据表中试运行用的记录清除,但要注意有些数据可能是软件预先应提供的,那么就不应该删除,如与软件一起提供给用户的。
  注意:prg文件、菜单文件、表单文件、报表文件、标签文件等等不要复制进去,因为它们已经被编译在exe文件中了,还有就是不属于软件运行的文件,如系统分析文件,也不要复制进去。
  启动VFP系统,如果VFP系统已经启动,最好关闭所有打开的文件。
  1.选择菜单上的“工具”-“向导”-“安装”;
  2.按“发布树目录”后面的按钮,找到在第1步中建的那个目录,选定,按下一步;
  3.选择Visual Foxpro运行库,其它三个一般不选,按下一步;
  4.选择生成的安装文件存放的目录,一般可在软件目录中,即与exe目录在一起,还要选择安装方式,要么是1.44M盘、要么是网络安装、或者两都选,按下一步;
  5.在安装对话框和版权信息中输入适当内容,安装对话框主要是用在安装软件时显示的信息,版权信息中一定要输入内容,随便输入点啥都成,否则按不了下一步,执行程序中不要输入内容,它不是指软件所要执行的程序。接着再下一步;
  6.输入安装的默认目录,在开始菜单的中的程序管理器组的名称,确定用户安装时是仅可以更改目录,还是目录与程序管理器组都可更改,一般就设为都可更改,再下一步;
  7.在文件列表中找到编译的exe文件,按下它后面的程序管理器项小方框,在说明中输入开始菜单中启动该软件的图标说明,命令行中输入exe文件名,记得前面加上“%s/”,这是为了软件安装在不同目录中也能正常运行,如果您喜欢,还可为它选择一个图标(按“图标...”按钮选择),否则就是狐狸头,接着确定。在exe文件后的程序管理器项小方框中应出现有一个钩,再按下一步;
  8.一级方程式赛车就要到终点了,如果没有问题就按下“完成”开始冲线,要是有问题,想起点什么来,就按“上一步”回去看看; 一旦按下“完成”就不能再回头了,系统便开始按照您的设置制作安装盘,可能需要那么几分钟,制作完成后会有一个报告,没多大意义;
  9.看完报告后,按完成,这次可就真的完成了,您会在磁盘上看到生成的安装文件目录,如果是网络安装,目录是“netsetup”,其中是安装您的软件所需的文件,如果是3'盘,目录是“disk144”,其中还会有disk1 、disk2、disk3.......等子目录,分别把每个目录中的文件复制到一张盘上,安装时从第一张盘开始,运行setup即可。
  
  应该讲得很详细了吧。跟着去做做看,做好了可别忘了我哦~o~。
---------------------------------------------------------------

不用制作安装盘,不需安装VFP也可以.只需要在默认目录下能找到相应的.DLL文件,VFP编译的EXE文件就能正常运行.
  对于VFP5编译的程序,.DLL文件是VFP500.DLL,VFP500CHS.DLL.对于VFP6编译的程序,DLL文件是VFP6R.DLL,VFP6RCHS.DLL,对于VFP7编译的程序,DLL文件是MSVCR70.DLL,VFP7R.DLL,VFP7RCHS.DLL.
  在发布你的应用程序时,将EXE文件和上述DLL文件拷贝到同一个目录下就可以了.
%% capital coefficient matrix % I get the data of capital stock, investment, and depreciation from % EUKLEMS Capital input database, the raw data is valued in national currency %% major variables obtained in this code file: % euklems_capital_stock, euklems_investment, euklems_depreciation % all in the dimension of 1230 * 1230 * 13 cd ..\data\EUKLEMS\capital %% import data from EUKLEMS Capital Input excels % create matrices to load capital stock data capital_stock_euklems_bycountry (loading the raw data from excel) % each excel representing one country; within each excel file, each sheet representing one asset classes % in each matrix of one sheet, conlumn is for year and row is for using industry % m is a list for assets classes of 8 in euklems data, residential structure is not used, need to check how to deal with the 'other' % gross capital formation is obtained here. % the depreciation, named "consumption of fixed capital in EUKLEMS", labeled as D_ in the excel file, is also obtained here. % all three variables are in 1995 prices %% Asset class for capital stock (real), real investment (capital formation), % nominal investment, depreciation (real), and capital compensation % The code for the countries is based on the alphabetical order of the % acronom of the countries. There are 14 countries contained in the EUKLEMS database. % those excels contains viarous sheet tabs. Those in the list are just the % tab names in all of those excel files. capital_stock_sheets = ["K_IT", "K_CT", "K_Soft", "K_TraEq", "K_OMach", "K_OCon", "K_RStruc", "K_Other"]; real_investment_sheets = ["Iq_IT", "Iq_CT", "Iq_Soft", "Iq_TraEq", "Iq_OMach", "Iq_OCon", "Iq_RStruc", "Iq_Other"]; depreciation_sheets = ["D_IT", "D_CT", "D_Soft", "D_TraEq", "D_OMach", "D_OCon", "D_RStruc", "D_Other"]; nominal_investment_sheets = ["I_IT", "I_CT", "I_Soft", "I_TraEq", "I_OMach", "I_OCon", "I_RStruc", "I_Other"]; capital_compensation_sheets = ["CAP_IT", "CAP_CT", "CAP_Soft", "CAP_TraEq", "CAP_OMach", "CAP_OCon", "CAP_RStruc", "CAP_Other"]; % Country indices, 21 and 24 represent Japan and Korea which have some % different data structure country_excel_indices = [1, 2, 4, 9, 10, 11, 12, 14, 22, 23, 30, 36, 37, 40]; num_countries_euklems = length(country_excel_indices); num_assetsclass = 8; num_years = 13; % need to check where I deal with country 21 and 24 % Initialize 4-dimensional matrices to store data % Calculate the rate of return: compensation over capital stock capital_stock_bycountry=zeros(37, num_years, num_assetsclass, num_countries_euklems); real_investment_bycountry=zeros(37, num_years, num_assetsclass, num_countries_euklems); depreciation_bycountry=zeros(37, num_years, num_assetsclass, num_countries_euklems); nominal_investment_bycountry=zeros(37, num_years, num_assetsclass, num_countries_euklems); capital_compensation_bycountry=zeros(37, num_years, num_assetsclass, num_countries_euklems); % import data from excel using the function table2array for i=1:num_countries_euklems % Create the country-specific Excel file name str_country = [ '',num2str(country_excel_indices(i)),'.xls']; for w=1:num_assetsclass capital_stock_bycountry(:,:,w,i) = readmatrix(str_country,'Sheet',capital_stock_sheets(w),'Range','AB3:AN39'); % AB3:AN39 is from 1995 to 2007 for all industries real_investment_bycountry(:,:,w,i) = readmatrix(str_country,'Sheet',real_investment_sheets(w),'Range','AB3:AN39'); depreciation_bycountry(:,:,w,i)= readmatrix(str_country,'Sheet',depreciation_sheets(w),'Range','AB3:AN39'); nominal_investment_bycountry(:,:,w,i) = readmatrix(str_country,'Sheet',nominal_investment_sheets(w),'Range','AB3:AN39'); capital_compensation_bycountry(:,:,w,i) = readmatrix(str_country,'Sheet',capital_compensation_sheets(w),'Range','AB3:AN39'); end end %% replace the missing value with 0 % Replace infinite values and NaN values in the created matrices capital_stock_bycountry(isinf(capital_stock_bycountry))=0; capital_stock_bycountry(isnan(capital_stock_bycountry))=0; real_investment_bycountry(isinf(real_investment_bycountry))=0; real_investment_bycountry(isnan(real_investment_bycountry))=0; depreciation_bycountry(isinf(depreciation_bycountry))=0; depreciation_bycountry(isnan(depreciation_bycountry))=0; nominal_investment_bycountry(isinf(nominal_investment_bycountry))=0; nominal_investment_bycountry(isnan(nominal_investment_bycountry))=0; capital_compensation_bycountry(isinf(capital_compensation_bycountry))=0; capital_compensation_bycountry(isnan(capital_compensation_bycountry))=0; % now the dimension of the matrix: industry, year, assets class, country % for example, capital_stock_bycountry(:,:,1,1) gives how much IT capital stock that 37 sectors use in production over 13 years in Austria. % Check for NaN or Inf values in the matrices if any(isnan(capital_stock_bycountry(:))) || any(isinf(capital_stock_bycountry(:))) disp('capital_stock_bycountry contains NaN or Inf values'); end if any(isnan(depreciation_bycountry(:))) || any(isinf(depreciation_bycountry(:))) disp('depreciation_bycountry contains NaN or Inf values'); end if any(isnan(real_investment_bycountry(:))) || any(isinf(real_investment_bycountry(:))) disp('real_investment_bycountry contains NaN or Inf values'); end if any(isnan(nominal_investment_bycountry(:))) || any(isinf(nominal_investment_bycountry(:))) disp('real_investment_bycountry contains NaN or Inf values'); end if any(isnan(capital_compensation_bycountry(:))) || any(isinf(capital_compensation_bycountry(:))) disp('capital_compensation_bycountry contains NaN or Inf values'); end %% permutate the capital stock data to one sorted by country and then year and lastly a matrix of asset category and industry % Move the 3rd dimension (asset classes) to the 1st position. % Move the 1st dimension (using industries) to the 2nd position. % Move the 4th dimension (countries) to the 3rd position. % Move the 2nd dimension (years) to the 4th position. % after permutation, dimension: [assets classes, using-industries, using-countries, years] capital_stock_37=permute(capital_stock_bycountry,[3 1 4 2]); real_investment_37=permute(real_investment_bycountry,[3 1 4 2]); depreciation_37=permute(depreciation_bycountry,[3 1 4 2]); nominal_investment_37=permute(nominal_investment_bycountry,[3 1 4 2]); capital_compensation_37=permute(capital_compensation_bycountry,[3 1 4 2]); %% select 30 industries form 37, leaving out the already aggregated thus repeating industries % Create a mapping array for the columns to be selected col_mapping = [1:2, 4:7, 9:19, 21:24, 26:27, 29, 31:32, 34:37]; % select data for capital_stock, investment, and depreciation % selecting_industries is a function defined in a separate file in the folder called function capital_stock_30 = select_industries(capital_stock_37, col_mapping); investment_30 = select_industries(real_investment_37, col_mapping); depreciation_30 = select_industries(depreciation_37, col_mapping); nominal_investment_30 = select_industries(nominal_investment_37, col_mapping); capital_compensation_30 = select_industries(capital_compensation_37, col_mapping); % % clear the temporary variables % clear m i % clear capital_stock_bycountry capital_stock_37 % clear investment_bycountry real_investment_37 % clear depreciation_bycountry depreciation_37 %% extend the capital stock matrix to include countries that are not in the EUKLEMS data % the countries not in the EUKLEMS data are: 3, 5, 6, 7, 8, 13, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39 % the countries in the EUKLEMS data are: 1, 2, 4, 9, 10, 11, 12, 14, 22, 23, 30, 36, 37, 40 % create a new matrix to include all countries and then either EUKLEMS data OR non-EUKLEMS data in it % define constants and generate temperary matrice to store data num_all_countries = 41; n_industries = 30; capital_stock_euklems_complete_temp = zeros(num_assetsclass, n_industries, num_all_countries, num_years); investment_euklems_complete_temp = zeros(num_assetsclass, n_industries, num_all_countries, num_years); depreciation_euklems_complete_temp = zeros(num_assetsclass, n_industries, num_all_countries, num_years); nominal_investment_euklems_complete_temp = zeros(num_assetsclass, n_industries, num_all_countries, num_years); capital_compensation_euklems_complete_temp = zeros(num_assetsclass, n_industries, num_all_countries, num_years); for i = 1:num_countries_euklems country_idx = country_excel_indices(i); capital_stock_euklems_complete_temp(:, :, country_idx, :) = capital_stock_30(:, :, i, :); investment_euklems_complete_temp(:, :, country_idx, :) = investment_30(:, :, i, :); depreciation_euklems_complete_temp(:, :, country_idx, :) = depreciation_30(:, :, i, :); nominal_investment_euklems_complete_temp(:, :, country_idx, :) = nominal_investment_30(:, :, i, :); capital_compensation_euklems_complete_temp(:, :, country_idx, :) = capital_compensation_30(:, :, i, :); end % create the matrices to store the complete data which extends the asset classes to 30 num_assetsclass_all=30; capital_stock_euklems_complete = zeros(num_assetsclass_all,n_industries,num_all_countries,num_years); investment_euklems_complete = zeros(num_assetsclass_all,n_industries,num_all_countries,num_years); depreciation_euklems_complete = zeros(num_assetsclass_all,n_industries,num_all_countries,num_years); nominal_investment_euklems_complete = zeros(num_assetsclass_all,n_industries,num_all_countries,num_years); capital_compensation_euklems_complete = zeros(num_assetsclass_all,n_industries,num_all_countries,num_years); % need to confirm that communications device is also produced at % electrical, computing equipment industry % update_capital_stock is a function defined in a separate file in the folder called function, which is to allocate the 7 asset classes in EUKLEMS data to 30 asset classes vector in the complete matrices, leaving out the residential structure since it is not used in the production. This leads to the sum of each column the capital matrix not same as the total capital stock noted in the EUKLEMS data. The discrepancy is due to the residential structure. for year = 1:13 for i = 1:14 capital_stock_euklems_complete(:, :, country_excel_indices(i), year) = update_capital_stock_include_resi_structure(capital_stock_euklems_complete_temp, country_excel_indices(i), year); investment_euklems_complete(:, :, country_excel_indices(i), year) = update_capital_stock_include_resi_structure(investment_euklems_complete_temp, country_excel_indices(i), year); depreciation_euklems_complete(:, :, country_excel_indices(i), year) = update_capital_stock_include_resi_structure(depreciation_euklems_complete_temp, country_excel_indices(i), year); nominal_investment_euklems_complete(:, :, country_excel_indices(i), year) = update_capital_stock_include_resi_structure(nominal_investment_euklems_complete_temp, country_excel_indices(i), year); capital_compensation_euklems_complete(:, :, country_excel_indices(i), year) = update_capital_stock_include_resi_structure(capital_compensation_euklems_complete_temp, country_excel_indices(i), year); end end % clear capital_stock_euklems_30 depreciation_euklems_30 investment_euklems_30 % clear capital_stock_euklems_complete_temp depreciation_euklems_complete_temp investment_euklems_complete_temp %% using the capital coefficient matrix of italy and the adjusting factor (division of total capital stock intensity of the country over italy, numbered 22 % to get the capital coefficent matrix of other countries. The capital % stock total is from WIOD SEA. % adding the invesmtent and deprecation to the loop or there is other % better ways of doing this, check later cd ..\..\ wiod_k = readmatrix("k_gfcf_all.xlsx","Range",'E2:Q1441'); othercountries=[3,5,6,7,8,13,15,16,17,18,19,20,21,24,25,26,27,28,29,31,32,33,34,35,38,39]; for m=1:13 k_temp = wiod_k(:,m); for j=othercountries % Calculate the adjustment factor factor_temp=k_temp(36*(j-1)+2:36*(j-1)+35,:).'./ k_temp(36*21+2:36*21+35,:).'; factor=[factor_temp(:,1:3) sum(factor_temp(:,4:5),2)/2 factor_temp(:,6:22) sum(factor_temp(:,23:26),2)/4 factor_temp(:,27:34)]; % Update the capital coefficient matrix for other countries capital_stock_euklems_complete(:,:,j,m) =capital_stock_euklems_complete(:,:,22,m).*factor; investment_euklems_complete(:,:,j,m) = investment_euklems_complete(:,:,22,m).*factor; depreciation_euklems_complete(:,:,j,m) = depreciation_euklems_complete(:,:,22,m).*factor; capital_compensation_euklems_complete(:,:,j,m) = capital_compensation_euklems_complete(:,:,22,m).*factor; end end % until now, types of the assets is disaggregated for each using industry. %% adding the origin of each asset types in the capital coefficient matrix % Using the information of the final destination of the investment goods % in the WIOT data to . % with additional information, I convert the stock matrix complete3 into % 30*1230*13, need some some codes below to implement this %% adding the origin of each asset types in the capital coefficient matrix % Using the information of the final destination of the investment goods % in the WIOT data to . %with additional information, I convert the stock matrix complete3 into %30*1230*13, need some some codes below to implement this capital_stock_euklems_complete4=reshape(capital_stock_euklems_complete,[30,1230,13]); cd matlab\ load('wiots') year=(1995:2009); % convert each column into a 41*30 matrix capital_stock_euklems_complete_factor=zeros(30,41,1230,13); for i=1:13 wiot_nominal=WIOTs.(strcat('WIOT_',num2str(year(i)))); wiot_nominal_final = wiot_nominal(1:1435,1436:1640); % I care more about column here rather than row wiot_nominal_investment = wiot_nominal_final(:,4:5:end); %+ wiot_nominal_final(:,5:5:end) ; % now I have 41 columns for each year for 41 countries 41*1230 % above is a 1230*41 matrix, first I need to transpose this matrix to % for each country, and each asset class, I know the share of the % sourcing coutry % before, for each country, and each using industry, I know the share % of assets classes used wiot_nominal_investment_new=reshape(wiot_nominal_investment,[35,41,41]); wiot_nominal_investment_new_new= permute(wiot_nominal_investment_new,[2,1,3]); wiot_nominal_investment_new3=zeros(41,30,41); for m=1:41 wiot_nominal_investment_new_new_temp=wiot_nominal_investment_new_new(:,:,m); wiot_nominal_investment_new_new_temp2=[wiot_nominal_investment_new_new_temp(:,1:3) sum(wiot_nominal_investment_new_new_temp(:,4:5),2) wiot_nominal_investment_new_new_temp(:,6:22) sum(wiot_nominal_investment_new_new_temp(:,23:26),2) wiot_nominal_investment_new_new_temp(:,27:34)]; wiot_nominal_investment_new3(:,:,m)= wiot_nominal_investment_new_new_temp2; end wiot_nominal_investment_new_3_sum=sum(wiot_nominal_investment_new3,1); wiot_nominal_investment_new4=repelem(wiot_nominal_investment_new_3_sum,41,1,1); wiot_nominal_investment_new_ratio=wiot_nominal_investment_new3./wiot_nominal_investment_new4; wiot_nominal_investment_new5=repelem(wiot_nominal_investment_new_ratio,1,1,30); wiot_nominal_investment_new6= permute(wiot_nominal_investment_new5,[2,1,3]); capital_stock_euklems_complete_factor(:,:,:,i)=wiot_nominal_investment_new6; end capital_stock_euklems_complete_factor_new=reshape(capital_stock_euklems_complete_factor,[1230,1230,13]); capital_stock_euklems_complete5 = repelem(capital_stock_euklems_complete4,41,1,1); capital_stock_euklems_complete5_temp=reshape(capital_stock_euklems_complete5,[41,30,1230,13]); capital_stock_euklems_complete5_temp2 = permute(capital_stock_euklems_complete5_temp,[2,1,3,4]); capital_stock_euklems_complete6=reshape(capital_stock_euklems_complete5_temp2,[1230,1230,13]); euklems_capital_stock=capital_stock_euklems_complete6.*capital_stock_euklems_complete_factor_new; % here is the gross capital formation, which is essential investment % Real gross fixed capital formation, 1995 prices % following the same factor to extend the matrix for investment and % depreciation % investment investment_euklems_complete4=reshape(investment_euklems_complete,[30,1230,13]); investment_euklems_complete_factor_new=reshape(capital_stock_euklems_complete_factor,[1230,1230,13]); investment_euklems_complete5 = repelem(investment_euklems_complete4,41,1,1); investment_euklems_complete5_temp=reshape(investment_euklems_complete5,[41,30,1230,13]); investment_euklems_complete5_temp2 = permute(investment_euklems_complete5_temp,[2,1,3,4]); investment_euklems_complete6=reshape(investment_euklems_complete5_temp2,[1230,1230,13]); euklems_investment=investment_euklems_complete6.*investment_euklems_complete_factor_new; % depreciation depreciation_euklems_complete4=reshape(depreciation_euklems_complete,[30,1230,13]); depreciation_euklems_complete_factor_new=reshape(capital_stock_euklems_complete_factor,[1230,1230,13]); depreciation_euklems_complete5 = repelem(depreciation_euklems_complete4,41,1,1); depreciation_euklems_complete5_temp=reshape(depreciation_euklems_complete5,[41,30,1230,13]); depreciation_euklems_complete5_temp2 = permute(depreciation_euklems_complete5_temp,[2,1,3,4]); depreciation_euklems_complete6=reshape(depreciation_euklems_complete5_temp2,[1230,1230,13]); euklems_depreciation=depreciation_euklems_complete6.*depreciation_euklems_complete_factor_new; euklems_capital_stock(isinf(euklems_capital_stock))=0; euklems_capital_stock(isnan(euklems_capital_stock))=0; euklems_investment(isinf(euklems_investment))=0; euklems_investment(isnan(euklems_investment))=0; euklems_depreciation(isinf(euklems_depreciation))=0; euklems_depreciation(isnan(euklems_depreciation))=0; % clear i j m % clear capital_stock_euklems_complete capital_stock_euklems_complete4 capital_stock_euklems_complete5 capital_stock_euklems_complete5_temp capital_stock_euklems_complete5_temp2 capital_stock_euklems_complete6 % clear capital_stock_euklems_complete_factor capital_stock_euklems_complete_factor_new % clear col_mapping % clear depreciation_euklems_complete depreciation_euklems_complete4 depreciation_euklems_complete5 % clear depreciation_euklems_complete5_temp depreciation_euklems_complete5_temp2 depreciation_euklems_complete6 % clear depreciation_euklems_complete_factor_new factor factor_temp % clear investment_euklems_complete investment_euklems_complete4 investment_euklems_complete5 % clear investment_euklems_complete5_temp investment_euklems_complete5_temp2 investment_euklems_complete6 % clear investment_euklems_complete_factor_new k_other k_temp temp % clear wiod_k wiot_new wiot_new2 wiot_new3 wiot_nominal wiot_nominal_final % clear wiot_nominal_investment_new wiot_nominal_investment_new3 wiot_nominal_investment_new4 wiot_nominal_investment_new5 % clear wiot_nominal_investment_new6 wiot_nominal_investment_new_3_sum wiot_nominal_investment_new_new wiot_nominal_investment_new_new_temp % clear wiot_nominal_investment_new_new_temp2 wiot_nominal_investment_new_ratio wiot_tm wiot_tm_temp1 % clear wiotable cd '..\..\code'
06-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值