203.移除链表元素
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeElements(self, head: Optional[ListNode], val: int) -> Optional[ListNode]:
dummy_head = ListNode(next = head)
pre = dummy_head
cur = head
while cur:
if cur.val == val:
pre.next = cur.next
cur = cur.next
else:
pre = pre.next
cur = cur.next
return dummy_head.next
效率:0ms,击败100.00%
707. 设计链表
class ListNode:
def __init__(self, val):
self.val = val
self.next = None
class MyLinkedList:
"""
下标从0开始
"""
def __init__(self):
self.size = 0
self.head = ListNode(0)
def get(self, index: int) -> int:
# 注意是index >= self.size
if index < 0 or index >= self.size:
return -1
cur = self.head
for _ in range(index+1):
cur = cur.next
return cur.val
def addAtHead(self, val: int) -> None:
self.addAtIndex(0, val)
def addAtTail(self, val: int) -> None:
self.addAtIndex(self.size, val)
def addAtIndex(self, index: int, val: int) -> None:
if index < 0 or index > self.size:
return
pre = self.head
cur = pre.next
node = ListNode(val)
for _ in range(index):
pre = pre.next
cur = cur.next
node.next = cur
pre.next = node
self.size += 1
def deleteAtIndex(self, index: int) -> None:
if index >= self.size:
return
pre = self.head
cur = pre.next
for _ in range(index):
pre = pre.next
cur = cur.next
pre.next = cur.next
self.size -= 1
效率:80ms,击败18.11%
206. 反转链表
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
pre = None
cur = head
while cur:
tmp = cur.next
cur.next = pre
pre = cur
cur = tmp
return pre
效率:0ms,击败100.00%
24. 两两交换链表中的节点
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapPairs(self, head: Optional[ListNode]) -> Optional[ListNode]:
dummyhead = ListNode(next=head)
cur = dummyhead
while cur.next and cur.next.next:
# cur.next是奇数节点的情况,cur.next.next是偶数节点的情况。
# 保存节点1
pre = cur.next
# 保存节点2
next_cur = pre.next
# 保存节点3
tmp = next_cur.next
# 虚拟头节点指向节点2
cur.next = next_cur
# 节点2指向节点1
next_cur.next = pre
# 节点1指向节点3
pre.next = tmp
# cur向后移两位
cur = cur.next.next
return dummyhead.next
效率:0ms,击败100.00%
19. 删除链表的倒数第 N 个结点
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
size = 0
cur = head
# 计算链条中的节点个数
while cur:
cur = cur.next
size += 1
# 如果节点个数为1,又因为1<=n<=size,所以返回空
if size == 1:
return None
index = size - n
# 因为头节点也可能被删,所以加一个虚拟头节点
dummy_head = ListNode(next = head)
pre = dummy_head
cur = head
for _ in range(index):
pre = pre.next
cur = cur.next
# 此时cur就是要删除的节点
pre.next = cur.next
return dummy_head.next
效率:0ms,击败100.00%
142.环形链表 II
觉得抽象的话去看代码随想录的讲解。
这道题非常有意思,用快慢指针来遍历链表,只要两个指针的速度差为1,那么最终一定在环内相遇。
这就解决了第一个问题,如何判断有环。
但是还有第二个问题,就是怎么判断环的入口在哪。
这里的话因为相对速度,所以我们可以看做慢指针进入环后不动,快指针以速度1走一圈,那么此时快指针和慢指针直接的距离不超过一圈(慢指针在环的入口处,快指针在环的任意一个地方),所以快指针会在慢指针走一圈前就追上慢指针。
所以导致快慢两个指针一定在第一圈内相遇。
所以我们设链表头到环入口的距离为x,环入口到两指针相遇点的距离为y,相遇点到环入口的举例为z。
那么存在以下等式
slow_distance = x+y
fast_distance = x+y+n(y+z)
这里 n ≥ 1
又∵ 2 * slow_distance = fast_distance
∴ x = z
∴ 一个从表头开始走,一个从相遇点开始走,速度都为1时,再次相遇的地方就是环入口
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
fast = slow = head
while fast and fast.next:
# 因为快指针是两个两个地向后走的,所以需要fast.next!=None
# 同时因为快指针比慢指针走得快,所以只需要判断快指针是否为空即可。
fast = fast.next.next
slow = slow.next
if fast == slow:
if_circle = True
index1 = fast
# 一个从相遇点出发
index2 = head
# 一个从表头出发
while index1 != index2:
# 一起向后走,遇到了的位置就是环入口的位置
index1 = index1.next
index2 = index2.next
return index1
return None
效率:46ms,击败86.37%