【Pytorch实战系列】AlexNet训练FashionMNIST数据集

代码

运行时注意修改文件路径

import torch
from torch import nn
from torch.nn import Sequential, Conv2d, ReLU, MaxPool2d, Linear, Dropout, Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms

# 准备数据集
train_data = datasets.FashionMNIST("../datasets", train=True, transform=transforms.Compose([transforms.Resize(size=224), transforms.ToTensor()]), download=True)
test_data = datasets.FashionMNIST("../datasets", train=False, transform=transforms.Compose([transforms.Resize(size=224), transforms.ToTensor()]), download=True)
# print(test_data.data.shape)  # 28*28 -> 224*224

# 数据长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# print(train_data_size)   # 60000
# print(test_data_size)    # 10000

# 加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# tensorboard
writer = SummaryWriter("logs")

# 添加设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# 搭建神经网络
class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv1 = Sequential(
            Conv2d(1, 96, 11, 4, 3),
            ReLU(),
            MaxPool2d(3, 2)
        )
        self.conv2 = Sequential(
            Conv2d(96, 256, 5, 1, 2),
            ReLU(),
            MaxPool2d(3, 2)
        )
        self.conv3 = Sequential(
            Conv2d(256, 384, 3, 1, 1),
            ReLU(),
            Conv2d(384, 384, 3, 1, 1),
            ReLU(),
            Conv2d(384, 256, 3, 1, 1),
            ReLU(),
            MaxPool2d(3, 2)
        )
        self.fc = Sequential(
            Flatten(),             # 展开成一维
            Linear(256*6*6, 4096),
            ReLU(),
            Dropout(0.5),
            Linear(4096, 4096),
            ReLU(),
            Dropout(0.5),
            Linear(4096, 10)      # FashionMNIST数据集是10分类,所以要改一下原AlexNet的out_features
        )

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.fc(x)
        return x


# 创建网络模型
model = AlexNet()
model.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)

# 优化器
learning_rate = 0.001  # 亲测0.01的学习率时,准确率仅为9.9%
optim = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 设置训练网络的参数
train_step = 0
test_step = 0
epoch = 10

for i in range(epoch):
    print("————————第{}轮训练开始————————".format(i + 1))
    # 训练
    model.train()
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        output = model(imgs)
        loss = loss_fn(output, targets)
        # 优化器优化模型参数
        optim.zero_grad()
        loss.backward()
        optim.step()
        train_step += 1
        if train_step % 100 == 0:
            print("训练次数:{},loss:{}".format(train_step, loss))
            writer.add_scalar("train_loss", loss, train_step)

    # 测试
    model.eval()
    total_test_loss = 0
    total_test_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            output = model(imgs)
            loss = loss_fn(output, targets)
            total_test_loss += loss
            total_test_accuracy += (output.argmax(1) == targets).sum()

    print("测试集上整体的loss:{}".format(total_test_loss))
    print("测试集上整体的正确率:{}".format(total_test_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, test_step)
    writer.add_scalar("test_accuracy", total_test_accuracy/test_data_size, test_step)
    test_step += 1
    torch.save(model, "./savedModel/AlexNet/AlexNet_{}.pth".format(i))
    print("模型已保存")

writer.close()

训练和测试结果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值