Greatest Common Increasing Subsequence(LICS模板)

本文介绍了一种解决最长公共递增子序列问题的方法,并提供了一个C++实现示例。该问题要求找到两个数列之间的最长公共递增子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Greatest Common Increasing Subsequence

模板解析:https://blog.youkuaiyun.com/qq_34374664/article/details/77659413

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2

题解:给定两个数字串s1、s2,求出它们最长公共递增子序列的长度(可以不是连续的子序列)

代码:

#include <stdio.h>  
#include <string.h>
#include<algorithm>
using namespace std;  
int s1[510], s2[510];  
int l1, l2;  
int dp[510];
int main()
{  
    int t;  
    scanf("%d", &t);  
    while (t--)
	{  
	    int i,j;
        scanf("%d", &l1);  
        for (i = 1; i <= l1; ++i)  
            scanf("%d", &s1[i]);  
        scanf("%d", &l2);  
        for (i = 1; i <= l2; ++i)  
            scanf("%d", &s2[i]);  
		memset(dp, 0, sizeof(dp)); 
		int maxx;
	   for (i = 1; i <= l1; i++)
	   {  
        maxx= 0;  
        for (j = 1; j <= l2; j++)
		{  
            if (s1[i] > s2[j] && maxx< dp[j]) //判断是否为增序,更新最大值 
				maxx= dp[j]; 
            if (s1[i] == s2[j]) //记录增序终止时,增序的长度 
				dp[j] = maxx+ 1;
        }  
    }  
    maxx = 0;  
    for (i = 1; i <= l2; i++)
        if (maxx< dp[i])  
            maxx = dp[i];  
    printf("%d\n",maxx);  
    if (t)  
        printf("\n");  
  }  
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值