之前转载过一篇作者写的二分,分别阐述了三种情况,寻找值,寻找左边界,寻找右边界,最近看了labuladong的文章,新的边界套路理解,总结。
原来的文章:二分
原来这篇更容易理解,新文章套路更统一整齐。
寻找一个数
int binarySearch(int[] nums, int target){
int left = 0, right = nums.size()-1;
while(left<=right){
int mid = left + (right - left)/2;
if(nums[mid]==target) return mid;
else if(nums[mid]>target) right = mid-1;
else if(nums[mid]<target)left = mid+1;
}
return -1;//找不到
}
寻找左边界
等于target的最左边的索引值
int binarySearch(int[] nums, int target){
int left = 0, right = nums.size()-1;
while(left<=right){ // 退出条件是left = right+1
int mid = left + (right - left)/2;
if(nums[mid]==target) right = mid-1;
else if(nums[mid]>target) right = mid-1;
else if(nums[mid]<target) left = mid+1;
}
if(left >= nums.size() || nums[left] != target) return -1;
// 第一个判断举例:12345 寻找6 ,最终right,left都指向5,left = mid+1,left越界
// 第二个判断举例: 23456 寻找1, 最终left, right 指向2,right = mid -1, right越界
return left;
}
寻找右边界
寻找等于target的最右边的索引
int binarySearch(int[] nums, int target){
int left = 0, right = nums.size()-1;
while(left<=right){ // 退出条件是left = right+1
int mid = left + (right - left)/2;
if(nums[mid]==target) left = mid+1;
else if(nums[mid]>target) right = mid-1;
else if(nums[mid]<target) left = mid+1;
}
// 这里改为检查 right 越界的情况
if (right < 0 || nums[right] != target)
return -1;
return right;
}