UVA - 10883
Description ![]() Supermean Time Limit: 2 second
Do you know how to compute the mean (or average) of n numbers? Well, that's not good enough for me. I want the supermean! "What's a supermean," you ask? I'll tell you. List the n given numbers in non-decreasing order. Now compute the average of each pair of adjacent numbers. This will give you n - 1 numbers listed in non-decreasing order. Repeat this process on the new list of numbers until you are left with just one number - the supermean. I tried writing a program to do this, but it's too slow. :-( Can you help me? Input Output
Problemsetter: Igor Naverniouk Source
Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 2. Mathematics :: Counting ::
Exercises: Beginner
Root :: Prominent Problemsetters :: Igor Naverniouk (Abednego) |
题意:
给出n个数,每相邻两个数求平均数,得到n-1个数,然后再继续这有求得到n-2个,一直到最后1个数。求这个数
手算一下就知道是二项式系数
ans = ∑C(n-1, i) / (2^(n-1))
但是这里范围特别大,所以需要取对数来算
原理:e^log(e, a) = a
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <cmath>
#include <queue>
#include <set>
using namespace std;
//#define WIN
#ifdef WIN
typedef __int64 LL;
#define iform "%I64d"
#define oform "%I64d\n"
#define oform1 "%I64d"
#else
typedef long long LL;
#define iform "%lld"
#define oform "%lld\n"
#define oform1 "%lld"
#endif
#define S64I(a) scanf(iform, &(a))
#define P64I(a) printf(oform, (a))
#define P64I1(a) printf(oform1, (a))
#define REP(i, n) for(int (i)=0; (i)<n; (i)++)
#define REP1(i, n) for(int (i)=1; (i)<=(n); (i)++)
#define FOR(i, s, t) for(int (i)=(s); (i)<=(t); (i)++)
const int INF = 0x3f3f3f3f;
const double eps = 1e-9;
const double PI = (4.0*atan(1.0));
int main() {
int T;
scanf("%d", &T);
for(int kase=1; kase<=T; kase++) {
int n;
double lnc = 0;
double ans = 0;
scanf("%d", &n);
double ln2 = (n-1) * log(2.0);
for(int i=0; i<n; i++) {
double val;
scanf("%lf", &val);
if(val > 0) ans += exp(log(val) + lnc - ln2);
else ans -= exp(log(-val) + lnc - ln2);
lnc = lnc + log(n-i-1) - log(i+1);
}
printf("Case #%d: %.3lf\n", kase, ans);
}
return 0;
}