Time Limit: 1000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description

Problem A
Almost Union-Find
I hope you know the beautiful Union-Find structure. In this problem, you're to implement something similar, but not identical.
The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:
1 p q
Union the sets containing p and q. If p and q are already in the same set, ignore this command.
2 p q
Move p to the set containing q. If p and q are already in the same set, ignore this command
3 p
Return the number of elements and the sum of elements in the set containing p.
Initially, the collection contains n sets: {1}, {2}, {3}, ..., {n}.
Input
There are several test cases. Each test case begins with a line containing two integers n and m (1<=n,m<=100,000), the number of integers, and the number of commands. Each of the next m lines contains a command. For every operation, 1<=p,q<=n. The input is terminated by end-of-file (EOF). The size of input file does not exceed 5MB.
Output
For each type-3 command, output 2 integers: the number of elements and the sum of elements.
Sample Input
5 7 1 1 2 2 3 4 1 3 5 3 4 2 4 1 3 4 3 3
Output for the Sample Input
3 12 3 7 2 8
Explanation
Initially: {1}, {2}, {3}, {4}, {5}
Collection after operation 1 1 2: {1,2}, {3}, {4}, {5}
Collection after operation 2 3 4: {1,2}, {3,4}, {5} (we omit the empty set that is produced when taking out 3 from {3})
Collection after operation 1 3 5: {1,2}, {3,4,5}
Collection after operation 2 4 1: {1,2,4}, {3,5}
Rujia Liu's Present 3: A Data Structure Contest Celebrating the 100th Anniversary of Tsinghua University
Special Thanks: Yiming Li
Note: Please make sure to test your program with the gift I/O files before submitting!
Source
题意:
维护一些不相交的集合,支持3总操作
1 p q 合并p q所在集合
2 p q 把元素p移动到q所在集合
3 p 输出p所在集合的元素个数和元素和
在普通并查集基础上,可以给每个元素添加一个附加属性,nowfa,表示该元素在2操作后的父亲(如果没有2操作nowfa[x] = -1)。
find(x)不变,直接按照fa[x]寻找。
新增一个FindRoot(x)操作变:
如果nowfa[x] != -1,说明x经过了2操作,则应该是find(nowfa[x])。否则是find(x)。
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <cmath>
#include <queue>
#include <set>
using namespace std;
//#define WIN
#ifdef WIN
typedef __int64 LL;
#define iform "%I64d"
#define oform "%I64d\n"
#define oform1 "%I64d"
#else
typedef long long LL;
#define iform "%lld"
#define oform "%lld\n"
#define oform1 "%lld"
#endif
#define S64I(a) scanf(iform, &(a))
#define P64I(a) printf(oform, (a))
#define P64I1(a) printf(oform1, (a))
#define REP(i, n) for(int (i)=0; (i)<n; (i)++)
#define REP1(i, n) for(int (i)=1; (i)<=(n); (i)++)
#define FOR(i, s, t) for(int (i)=(s); (i)<=(t); (i)++)
const int INF = 0x3f3f3f3f;
const double eps = 1e-9;
const double PI = (4.0*atan(1.0));
const int maxn = 100000 + 20;
int fa[maxn], size[maxn], sum[maxn];
int flag[maxn], nowfa[maxn];
int find(int x) {
if(x == fa[x]) return x;
return fa[x] = find(fa[x]);
}
void Union(int a, int b) {
int pa = find(a);
int pb = find(b);
if(pa == pb) return ;
if(size[pa] > size[pb]) swap(pa, pb);
size[pb] += size[pa];
size[pa] = 0;
sum[pb] += sum[pa];
sum[pa] = 0;
fa[pa] = pb;
return ;
}
int main() {
int n, m;
while(scanf("%d%d", &n, &m) != EOF) {
memset(flag, 0, sizeof(flag));
for(int i=1; i<=n; i++) fa[i] = i, sum[i] = i, size[i] = 1;
while(m--) {
int q;
int a, b;
scanf("%d", &q);
if(q == 1) {
scanf("%d%d", &a, &b);
int pa, pb;
if(flag[a]) pa = find(nowfa[a]);
else pa = find(a);
if(flag[b]) pb = find(nowfa[b]);
else pb = find(b);
Union(pa, pb);
} else if(q == 2) {
scanf("%d%d", &a, &b);
int pa, pb;
if(flag[a]) pa = find(nowfa[a]);
else pa = find(a);
if(flag[b]) pb = find(nowfa[b]);
else pb = find(b);
size[pa]--;
size[pb]++;
sum[pa] -= a;
sum[pb] += a;
flag[a] = 1;
nowfa[a] = pb;
} else {
scanf("%d", &a);
int pa;
if(flag[a]) pa = find(nowfa[a]);
else pa = find(a);
printf("%d %d\n", size[pa], sum[pa]);
}
}
}
return 0;
}