UVa 11916 - Emoogle Grid (离散对数)

本题针对一个已知结果的网格涂色问题进行逆向求解,需找到使得给定涂色方案数量成立的最小网格行数。通过分析涂色方案的数量公式,并利用离散对数等数学工具来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Emoogle Grid 

You have to color an M x N ( 1$ \le$MN$ \le$108) two dimensional grid. You will be provided K ( 2$ \le$K$ \le$108) different colors to do so. You will also be provided a list of B ( 0$ \le$B$ \le$500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (xy), which points to the y-th cell from the left of the x-th row from the top.

While coloring the grid, you have to follow these rules -

  1. You have to color each cell which is not blocked.
  2. You cannot color a blocked cell.
  3. You can choose exactly one color from K given colors to color a cell.
  4. No two vertically adjacent cells can have the same color, i.e. cell (xy) and cell (x + 1, y) cannot contain the same color.

\epsfbox{p11916.eps}

Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn't want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem.

But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the `number of rows'. He didn't find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the `number of rows' and the answer file; you have to find the number of rows he might have used for this problem.

Input 

Input starts with an integer T (T$ \le$150), denoting the number of test cases.

Each test case starts with a line containing four integers NKB and R ( 0$ \le$R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y ( 1$ \le$x$ \le$M1$ \le$y$ \le$N), denoting the row and column number of a blocked cell. All the cells will be distinct.

Output 

For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case.

Sample Input 

4
3 3 0 1728
4 4 2 186624
3 1
3 3
2 5 2 20
1 2
2 2
2 3 0 989323

Sample Output 

Case 1: 3
Case 2: 3
Case 3: 2
Case 4: 20



题意:

有这样一道题目,要给M行N列的网格涂上K种颜色,其中共有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个格子不能涂相同的颜色。给出M,N,K和B个格子的位置,求出涂色方案的种数取余100000007的结果R。

本题的任务刚好和这个相反:已知NKR和B个格子的位置,求最小可能的M。


稍微一看就可以得出

每一列涂色是独立的,同一列的只有第一行的和该格子上面不涂色的有K种涂色方案,其他都是K-1种方案。

那么最后的就可以得到 K^C * (K-1)^(n*m-C-B) = R (mod MOD)

其中C为可涂k种颜色的格子数

现在已知nkrb,要求m 用离散对数可以求出



#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <cmath>
#include <queue>
#include <set>

using namespace std;

//#define WIN
#ifdef WIN
typedef __int64 LL;
#define iform "%I64d"
#define oform "%I64d\n"
#define oform1 "%I64d"
#else
typedef long long LL;
#define iform "%lld"
#define oform "%lld\n"
#define oform1 "%lld"
#endif

#define S64I(a) scanf(iform, &(a))
#define P64I(a) printf(oform, (a))
#define P64I1(a) printf(oform1, (a))
#define REP(i, n) for(int (i)=0; (i)<n; (i)++)
#define REP1(i, n) for(int (i)=1; (i)<=(n); (i)++)
#define FOR(i, s, t) for(int (i)=(s); (i)<=(t); (i)++)

const int INF = 0x3f3f3f3f;
const double eps = 10e-9;
const double PI = (4.0*atan(1.0));

const int MOD = 100000007;
const int maxn = 1000;
const int maxb = 500 + 20;
int n, K, B, R, m;
set< pair<int,int> > bset;
int x[maxb], y[maxb];

LL mul_mod(LL a, LL b, LL c) {
    return a * b % c;
}

int pow_mod(LL a, LL p, LL c) {
    if(p == 0) return 1;
    LL ans = pow_mod(a, p/2, c);
    ans = ans * ans % c;
    if(p&1) ans = ans * a % c;
    return ans;
}

int inv(int a) {
    return pow_mod(a, MOD-2, MOD);
}

int log_mod(int a, int b) {
    int m, v, e = 1, i;
    m = (int)sqrt(MOD);
    v = inv(pow_mod(a, m, MOD));
    map <int,int> x;
    x[1] = 0;
    for(i = 1; i < m; i++){ e = mul_mod(e, a, MOD); if (!x.count(e)) x[e] = i; }
    for(i = 0; i < m; i++){
        if(x.count(b)) return i*m + x[b];
        b = mul_mod(b, v, MOD);
    }
    return -1;
}

int count() {
    int c = 0;
    for(int i=0; i<B; i++) {
        if(x[i] != m && !bset.count(make_pair(x[i]+1, y[i]))) c++;
    }
    c += n;
    for(int i=0; i<B; i++) if(x[i] == 1) c--;
    LL t1 = pow_mod(K, c, MOD);
    LL t2 = pow_mod(K-1, (LL)n*m-c-B, MOD);
    return mul_mod(t1, t2, MOD);
}

int solve() {
    int cnt = count();
    if(cnt == R) return m;
    int c = 0;
    for(int i=0; i<B; i++) if(x[i] == m) c++;
    m++;
    int tcnt= mul_mod(pow_mod(K, c, MOD), pow_mod(K-1, n-c, MOD), MOD);
    cnt = mul_mod(cnt, tcnt, MOD);
    if(cnt == R) return m;
    // (k-1)^n * cnt = R (mod MOD)
    LL t1 = pow_mod(K-1, n, MOD);
    LL t2 = mul_mod(R, inv(cnt), MOD);
    return log_mod(t1, t2)+ m;
}

int main() {
    int T;

    scanf("%d", &T);
    for(int kase=1; kase<=T; kase++) {
        m = 1;
        bset.clear();
        scanf("%d%d%d%d", &n, &K, &B, &R);
        for(int i=0; i<B; i++) {
            scanf("%d%d", &x[i], &y[i]);
            m = max(x[i], m);
            bset.insert(make_pair(x[i], y[i]));
        }
        int ans = solve();
        printf("Case %d: %d\n", kase, ans);
    }

    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值