SQL Server索引进阶:第二级,深入非聚集索引

在第一级中介绍了SQL Server中的非聚集索引。而且在第一个学习的例子中,我们证明了在从表中获取一行数据的情况下,索引带来的潜在的好处。在这一级中,我们继续介绍非聚集索引,看看他们在提升查询性能中做出的贡献。

我们先来介绍一些理论,了解一些索引的内部信息,帮助我们解释理论,然后执行一些查询。这些查询会在包含和不包含索引的两种情况被执行,开启性能报告,我们可以看到索引产生的影响。

我们继续使用AdventureWorks 数据库的部分表,主要集中在Contact表。我们将只是用一个索引,在上一级中使用的FullName索引,来证明我们的观点。为了确保我们很好的控制Contact表的索引,我们将做两份拷贝,一份建立FullName索引,一份不建立索引。

IF EXISTS ( 
 
    SELECT * 
 
        FROM sys.tables 
 
        WHERE OBJECT_ID = OBJECT_ID('dbo.Contacts_index')) 
DROP TABLE dbo.Contacts_index; 
GO 
IF EXISTS ( 
 
    SELECT * 
 
        FROM sys.tables 
 
        WHERE OBJECT_ID = OBJECT_ID('dbo.Contacts_noindex')) 
 
    DROP TABLE dbo.Contacts_noindex; 
GO 
SELECT * INTO dbo.Contacts_index 
 
    FROM Person.Contact; 
SELECT * INTO dbo.Contacts_noindex 
 
    FROM Person.Contact; 
 


非聚集索引

在Contacts_index 表建立非聚集索引

CREATE INDEX FullName 
 
        ON Contacts_index 
 
( LastName, FirstName ); 
 


请记住,非聚集索引顺序存储索引键,通过标记来访问表中真正的数据。你可以把标签看做一种指针。将来的级别中会描述标签的格式,标签的用法,标签的细节。

另外,SQL Server的非聚集索引的入口还有一些内部使用的头信息,还有一些可选的数据值。这些在后面的文章中都会有介绍,现在都不是重点内容。

到目前为止,我们只需要知道,键使得SQL Server找到合适的索引入口,入口的标签使得SQL Server访问表对应的行数据。

索引入口有序的好处

索引的入口是有序的,因此SQL Server可以快速的定位入口。扫描可以从头部开始,可以从尾部开始,也可以从中间开始。

因此,如果一个查询,请求所有LastName以S开头的Contact用户(where lastname like 's%')。SQL Server会快速定位到第一个S开头的记录,然后通过索引,使用标签访问数据行,直到第一个T开头的记录。

如果选择的列都包含在索引中,上面的查询会执行的更快。如果我们执行

SELECT FirstName, LastName 
 
    FROM Contact 
 
    WHERE LastName LIKE 'S%'; 
 


SQL Server快速的导航到S入口,然后通过索引,忽略标签,直接从索引的入口返回数据,直到第一个T入口。在关系数据库的名词中,叫做查询全覆盖索引。

很多SQL的操作都可以从索引中受益,包括:ORDER BY, GROUP BY, DISTINCT, UNION( not UNION ALL ), JOIN ... ON 。

谨记从左到右的键顺序的重要性。我们建立的索引对于lastname=“ashton”很管用,但是对于firstname=“ashton”作用会小很多,甚至没有用。

测试一些简单的查询

如果你要执行下面的查询,确保你执行了前面的脚本,创建了contact_index和contact_noindex表,而且也在contact_index表创建了LastName, FirstName索引。

开启统计

SET STATISTICS io ON 
 
SET STATISTICS time ON 
 


因为contact表中的数据只有19972行,很难得到有意义的统计时间。大部分的查询都显示CPU time: 0 毫秒,因此我们可以关闭time统计,只显示io统计。如果你需要一张大表来统计真实的time信息,可以用文章后面的脚本构建一个百万行数据的contact表。下面的测试都以19972行的表为测试对象。


测试一个完全覆盖的查询

第一个查询是一个覆盖索引的查询,获取contact表中lastname以S开头的记录的一部分列。下面是执行的信息。

测试一个非完全覆盖的查询

我们修改一下查询,还是相同的查询,只是获取的列包含了一些没有建立索引的列,下面是执行的结果。

测试一个非完全覆盖的查询,但是提供更多的条件

我们修改一下查询,还是相同的查询,只是缩减了查询结果的范围,增加使用索引的好处,下面是执行的结果。


测试一个完全覆盖的聚合查询

最后一个例子是一个聚合查询,包含了count计算。

测试一个非完全覆盖的聚合查询

我们修改一下查询,还是相同的查询,只是获取的列包含了一些没有建立索引的列,下面是执行的结果。

结论

当目前位置,我们知道非聚集索引有下面的一些好处:

是一些有序的入口集合。
表中的每一行都有一个入口。
包含一个索引键和一个标签。
用户负责创建的。
SQL Server来维护。
SQL Server用来最小化查询尝试,来满足客户的请求。
通过一些例子,我们看到SQL Server通过索引可以满足查询的请求,也有一些查询会完全忽略索引,还有一些会部分的使用索引。基于这个原因,我们来更新一下在第一级中的一个结论。

当一个请求到达数据库的时候,SQL Server只有三种访问数据的方式:

访问非聚集索引,避免访问表。这只发生在索引包含了请求中的所有数据。
通过索引键访问非聚集索引,然后使用标签访问表中的行数据。
忽略非聚集索引,扫描表找到请求的行数据。
通常来说,第一种是理想的,第二种要比第三种好。在之前的介绍中,我们知道了如何增加索引的使用可能性,如何决定更高效的使用非聚集索引。但是我们需要知道更多的索引内部的细节。

在我们知道细节之前,我们还需要介绍其他类型的SQL Server索引:聚集索引。

代码下载
 Level2_MillionRowContactTable.sql

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落尘521

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值