MDS(多维尺度法)的原理及MATLAB实现

MDS(多维尺度法)用于根据样本间距离矩阵重构点的相对位置。本文通过步骤介绍MDS如何解决最优化问题,利用特征值分解求解,并提供MATLAB代码示例展示如何重构英国城市地理位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在模式识别中,我们会考虑到距离distance的问题,就是一个样本和另一个样本在空间中的距离。根据距离的大小来判断分类。那么,也存在这样的一类问题:我们只知道空间中的点(样本)的距离,那么怎么来重构这些点的相对位置呢?

显然欧式距离是最直观的距离,那么我们就会想使用欧式距离来进行计算重构,我们还希望能够在不同维度上进行重构,比如2维或者3维。

怎么做?

有这么个解决方法叫做MDS 全称为 Multidimensional Scaling。


下面Step By Step介绍MDS如何来求解这个问题。


Step 1:问题重述


我们有这么一个距离矩阵,我们通过这个矩阵计算出点的相对位置矩阵X,使得通过X反过来计算距离矩阵与原距离矩阵D差距最小。所以这是一个最优化问题。

大家可以看wikipedia上的问题描述,这里直接截图好了:


Step 2:通过矩阵的方法求解

大家也看到wiki最

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值