高斯分布的理解

高斯分布 (Gaussian distribution) 又称正态分布(Normal distribution) ,最早由A.棣莫弗在求 二项分布 的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。 [1]     是一个在 数学 、物理及工程等领域都非常重要的 概率 分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为 钟形曲线
随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布
高斯分布的理解 - zm_szu - 这孩子谁懂的博客

定义:

一维正态分布

随机变量
   
服从一个位置参数为
   
、尺度参数为
   
的概率分布,且其 概率密度函数
则这个 随机变量就称为 正态随机变量,正态随机变量服从的分布就称为 正态分布,记作
   
,读作
   
服从
   
,或
   
服从正态分布。
μ维随机 向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何 线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
本词条的正态分布是一维正态分布,此外多维正态分布参见“ 二维正态分布”。

标准正态分布

   
时,正态分布就成为 标准正态分布
参数含义:
μ是正态分布的位置参数,描述正态分布的 集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为 对称轴,左右完全对称。正态分布的期望、 均数中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值