STRUCT DATA2

1.1.1        Hash

根据设定的哈希函数H(key)和处理冲突的方法将一组关键字映像到一个有限的连续的地址集(区间)上,并以关键字在地址集中的作为纪录在表中的存储位置,这种表便称为哈希表,这一影像过程称为哈希造表或散列,所得存储位置称哈希地址或散列地址。

1.1.2        二叉树

二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。

二叉树的定义

1.
二叉树的递归定义
     二叉树(BinaryTree)n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。

2.二叉树的五种基本形态
     二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
    二叉树的五种基本形态如下图所示。 

 
3.二叉树不是树的特例
1)二叉树与无序树不同
     二叉树中,每个结点最多只能有两棵子树,并且有左右之分。
   二叉树并非是树的特殊情形,它们是两种不同的数据结构。

2)二叉树与度数为2的有序树不同
    在有序树中,虽然一个结点的孩子之间是有左右次序的,但是若该结点只有一个孩子,就无须区分其左右次序。而在二叉树中,即使是一个孩子也有左右之分。
  【例】下图中(a)(b)是两棵不同的二叉树,它们同右图中的普通树(作为有序树或无序树)很相似,但却不等同于这棵普通树。若将这三棵树均看做普通树,则它们就是相同的了。      


   二叉树并非是树的特殊情形,它们是两种不同的数据结构。

1.2      查找

1.2.1        查找

本章简介
     由于查找运算的使用频率很高,几乎在任何一个计算机系统软件和应用软件中都会涉及到,所以当问题所涉及的数据量相当大时,查找方法的效率就显得格外重要。在一些实时查询系统中尤其如此。因此,本章将系统地讨论各种查找方法,并通过对它们的效率分析来比较各种查找方法的优劣。

查找的基本概念

1、查找表和查找
     一般,假定被查找的对象是由一组结点组成的表(Table)或文件,而每个结点则由若干个数据项组成。并假设每个结点都有一个能惟一标识该结点的关键字。
     查找(Searching)的定义是:给定一个值K,在含有n个结点的表中找出关键字等于给定值K的结点。若找到,则查找成功,返回该结点的信息或该结点在表中的位置;否则查找失败,返回相关的指示信息。

2、查找表的数据结构表示
1)动态查找表和静态查找表
     若在查找的同时对表做修改操作(如插入和删除),则相应的表称之为动态查找表。否则称之为静态查找表。

2)内查找和外查找
     和排序类似,查找也有内查找和外查找之分。若整个查找过程都在内存进行,则称之为内查找;反之,若查找过程中需要访问外存,则称之为外查找。

3、平均查找长度ASL
   
 查找运算的主要操作是关键字的比较,所以通常把查找过程中对关键字需要执行的平均比较次数(也称为平均查找长度)作为衡量一个查找算法效率优劣的标准。
    平均查找长度 ASL(Average Search Length)定义为:
       
  其中:
     ①n是结点的个数;
    ②Pi是查找第i个结点的概率。若不特别声明,认为每个结点的查找概率相等,即
           pl=p2…=pn=1/n
   
 ③ci是找到第i个结点所需进行的比较次数。
  注意:
   
 为了简单起见,假定表中关键字的类型为整数:
        typedef int KeyType //KeyType应由用户定义

1.2.2        线性表的查找

顺序查找(Sequential Search)

   
 在表的组织方式中,线性表是最简单的一种。顺序查找是一种最简单的查找方法。

1、顺序查找的基本思想
     基本思想是:从表的一端开始,顺序扫描线性表,依次将扫描到的结点关键宇和给定值K相比较。若当前扫描到的结点关键字与K相等,则查找成功;若扫描结束后,仍未找到关键字等于K的结点,则查找失败。

二分查找

1、二分查找(Binary Search)
   
 二分查找又称折半查找,它是一种效率较高的查找方法。
     二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用向量作为表的存储结构。不妨设有序表是递增有序的。

2、二分查找的基本思想
     二分查找的基本思想是:(设R[low..high]是当前的查找区间)
 1)首先确定该区间的中点位置:
               
 2)然后将待查的K值与R[mid].key比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找,具体方法如下:
    ①若R[mid].key>K,则由表的有序性可知R[mid..n].keys均大于K,因此若表中存在关键字等于K的结点,则该结点必定是在位置mid左边的子表R[1..mid-1]中,故新的查找区间是左子表R[1..mid-1]
     ②类似地,若R[mid].key<K,则要查找的K必在mid的右子表R[mid+1..n]中,即新的查找区间是右子表R[mid+1..n]。下一次查找是针对新的查找区间进行的。
     因此,从初始的查找区间R[1..n]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。这一过程重复直至找到关键字为K的结点,或者直至当前的查找区间为空(即查找失败)时为止。

分块查找

     分块查找(Blocking Search)又称索引顺序查找。它是一种性能介于顺序查找和二分查找之间的查找方法。

1、二分查找表存储结构
     二分查找表由"分块有序"的线性表和索引表组成。
1"分块有序"的线性表
     表R[1..n]均分为b块,前b-1块中结点个数为,第b块的结点数小于等于s;每一块中的关键字不一定有序,但前一块中的最大关键字必须小于后一块中的最小关键字,即表是"分块有序"的。

2)索引表
     抽取各块中的最大关键字及其起始位置构成一个索引表ID[l..b],即:
ID[i](1≤i≤b)中存放第i块的最大关键字及该块在表R中的起始位置。由于表R是分块有序的,所以索引表是一个递增有序表。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值