
深度学习
文章平均质量分 75
zhaocj
这个作者很懒,什么都没留下…
展开
-
应用DeepSORT实现目标跟踪
但在这里,我们不使用官方的代码,而使用第三方代码,其网址为https://github.com/levan92/deep_sort_realtime。orginal_ltwh、det_conf、det_class:分别表示目标边框信息、置信值和类型,这三个值都是由tracker.update_tracks传入系统的原始目标的信息,但此时已匹配上了目标ID。max_iou_distance:IoU的门控阈值,大于该值的关联会被忽略,默认值为0.7。n_init:在初始阶段轨迹被保留的帧数,默认值为3。原创 2023-10-08 17:41:19 · 3593 阅读 · 5 评论 -
部署并应用ByteTrack实现目标跟踪
outputs表示目标检测器的输出,ByteTrack需要先进行目标检测,然后才能利用ByteTrack算法实现跟踪,outputs应为二维数组,第一维表示目标,第二维表示该目标的信息,其前四个元素为目标边框的左上角和右下角的坐标,第5个元素为该目标的得分值,一般我们可以为该值赋予目标的置信值。从中可以看出,我们共得到了4个目标跟踪结果,它们的ID分别为2、3、4和7,其中ID为2的目标在第1帧开始出现,28为当前帧数,即在第28帧时,我们使用了print(tracks)这个代码。默认值为False。原创 2023-10-02 17:27:57 · 7638 阅读 · 8 评论 -
应用第三方ByteTrack实现目标跟踪
但吹毛求疵地说,官网的ByteTrack有一些不足:1、为了通用性及科研的要求,代码过于冗长,但这不利于集成到自己的程序中;输出参数为该帧的跟踪结果,前4个元素为目标边框的左上角和右下角坐标(其与boxes有所不同),第4个元素为跟踪ID,第5个元素为目标得分值,第6个元素为目标类型,第7个元素为boxes所对应的索引值。为此,我们把核心函数整合到一个名为track.py的文件内,并把其放入到mytrack的文件夹内,然后把该文件夹复制到当前目录下。我把track.py文件内的完整内容复制到本博文的后面。原创 2023-10-06 15:50:01 · 2017 阅读 · 5 评论 -
编写自己的目标跟踪算法
函数set_id的作用就是为当前目标设置ID,它的输入变量是被设置目标ID的中心点坐标centerPt,返回的是该目标的ID号return_id。在这里,我们除了为目标标注ID外,还实现了另一个功能:绘制了该目标的运动轨迹,所以这里的坐标不仅仅是当前帧的坐标,还包括以前同一目标的坐标。由于我们已经把当前帧内出现的ID保存在了now_id内,所以我们只需要把id_history内的ID与now_id比较,将now_id内没有出现的ID从id_history内剔除掉即可。id_counter为目标ID的编号。原创 2023-09-20 19:44:40 · 603 阅读 · 2 评论 -
基于YOLOv8的目标跟踪——汽车跟踪和计数
因为我们这里应用的场景比较简单,所以我们只是设置了一条水平基准线,通过前后两帧同一辆车辆的坐标位置,可以判断出其行驶的方向,当越过基准线时,就计数一次。这是因为除了没有被统计进来的车辆(如,左上角和右上角的车辆)外,主要原因还是YOLOv8并没有完整的按顺序标记车辆ID,比如没有标记#6的车辆。在这里,我们不介绍任何原理性的内容,只以一个很简单的例子讲解如何应用YOLOv8进行目标跟踪,以及它所带来的一个附加功能——计数。目标跟踪针对的是视频处理,它是目标检测的更高级的应用。原创 2023-09-13 15:42:41 · 11658 阅读 · 51 评论 -
基于YOLO V8的车牌识别
十年前就想实现车牌识别这项任务,虽然当时这项技术就已较成熟(与现在的实现方法不同),但那时的我还具备这个能力。弹指一瞬间,没想到十年间人工智能技术已经发展到一个新的高度,图像识别早已不成问题,以ChapGPT为代表的生成式技术大行其道。写作、作曲、绘画等内容创作,甚至编程都可由计算机自动完成,这在以前只会出现在电影里。回到主题,正如上文提到的那样,图像识别经过十几年的发展,已经不再触不可及。基于各类预训练模型,通过简单的微调和迁移学习,就可以实现我们想要的各类图像分类、图像识别和图像分割。原创 2023-06-27 15:12:05 · 7096 阅读 · 11 评论