题目:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
编写一个搜索m×n矩阵中的值的有效算法。 该矩阵具有以下属性:
每行中的整数按从左到右的顺序进行排序。
每列中的整数按照从上到下的顺序进行排序。
例如,
考虑以下矩阵:
[
[1,4,7,11,15],
[2,5,8,12,19],
[3,6,9,16,22],
[10,13,14,17,24],
[18,21,23,26,30]
]
给定target = 5,返回true。
给定目标= 20,返回false。
解题代码:
#include<iostream>
#include<vector>
using namespace std;
#include<iostream>
#include<vector>
//#include<>
using namespace std;
class Solution {
public:
bool searchMatrix(vector<vector<int> >& matrix, int target) {
int m = matrix.size();
if(m == 0) return false;
int n = matrix[0].size();
int i = 0, j = n -1;
while(i < m && j >= 0) {
if(matrix[i][j] == target) return true;
else if(matrix[i][j] > target) {
j--;
} else i++;
}
return false;
}
};
int main() {
int arr[4][5] = {
{1, 4, 7, 11, 15},
{2, 5, 8, 12, 19},
{3, 6, 9, 16, 22},
{10, 13, 14, 17, 24},
// {18, 21, 23, 26, 30}
};
vector<vector<int> > v;
for(int i = 0; i < 4 ;i++) {
v.push_back(vector<int> ( arr[i],arr[i]+5) );
}
Solution s;
cout << s.searchMatrix(v,5) << " " << s.searchMatrix(v,20)<<endl;
}
题目状态: